线性求所有数模p的乘法逆元

    推理:

    假如当前计算的是x在%p意义下的逆元,设$p=kx+y$,则

    $\Large kx+y\equiv 0(mod\ p)$

    两边同时乘上$x^{-1}y^{-1}$(这里代表逆元)

    则方程变为$\Large k*y^{-1}+x^{-1}\equiv 0(mod\ p)$

    化简得$\Large x^{-1}\equiv -k*y^{-1}(mod\ p)$

    $\Large x^{-1}\equiv -\biggl\lfloor\frac{p}{x}\biggr\rfloor *(p\ mod\ x)^{-1}(mod\ p)$

    结果为

    $\Large x^{-1}\equiv (p-\biggl\lfloor\frac{p}{x}\biggr\rfloor )*(p\ mod\ x)^{-1}(mod\ p)$

    除了1,p mod x一定小于x,它的逆元已经算过,所以可以线性求出逆元

    void Inverse(int p,int a[],int n){//线性求<=n的数%p意义下的逆元 
        a[1]=1;
        for(int i=2;i<=n;i++){
            a[i]=1ll*(p-p/i)*a[p%i]%p;
        }
    }

    转载于:https://www.cnblogs.com/bennettz/p/7697787.html

    登录后您可以享受以下权益:

    ×
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值

    举报

    选择你想要举报的内容(必选)
    • 内容涉黄
    • 政治相关
    • 内容抄袭
    • 涉嫌广告
    • 内容侵权
    • 侮辱谩骂
    • 样式问题
    • 其他
    点击体验
    DeepSeekR1满血版
    程序员都在用的中文IT技术交流社区

    程序员都在用的中文IT技术交流社区

    专业的中文 IT 技术社区,与千万技术人共成长

    专业的中文 IT 技术社区,与千万技术人共成长

    关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

    关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

    客服 返回顶部