逆元模板、求1~n每个数的逆元模板

  • 欧拉定理:若 a a a n n n 互质,则 a φ ( n ) ≡ 1     ( m o d    n ) a^{\varphi(n)}\equiv1\space\space\space(mod\space\space n) aφ(n)1   (mod  n)

  • 欧拉定理的推论(费马定理):在 a a a p p p 互质的前提下,当 p p p 为质数时, a p − 1 ≡ 1     ( m o d    p ) a^{p-1}\equiv1\space\space\space(mod\space\space p) ap11   (mod  p)

  • 乘法逆元定义:若整数 b b b m m m 互质,并且 b ∣ a b|a ba,则存在一个整数 x x x,使得 a / b ≡ a ∗ x    ( m o d    m ) a/b\equiv a*x\space\space (mod\space\space m) a/bax  (mod  m),称 x x x b b b 的模 m m m 乘法逆元,记为 b − 1 ( m o d    m ) b^{-1} (mod\space\space m) b1(mod  m)

    b b b 存在乘法逆元的充要条件是 b b b 与模数 m m m 互质。当模数 m m m 为质数时, b m − 2 b^{m-2} bm2 即为 b b b 的乘法逆元。

问题转换为快速幂的计算:
快速幂模板


逆元模板

#include<bits/stdc++.h>
using namespace std;

typedef long long LL;

LL ksm (LL a, LL k, LL p) {
	LL res = 1;
	while (k) {
		if (k & 1) res = res * a % p;
		a = a * a % p;
		k >>= 1;
	}
	return res;
}

int main()
{
	LL n, p;
	cin >> n >> p;
	
	cout << ksm (n, p-2, p) << endl;	

	return 0;
}

计算 1 ∼ n 1 \sim n 1n 的乘法逆元模板:

题目链接

如果直接遍历 1   n 1~n 1 n 每个数都使用快速幂计算逆元会超时 O ( n   l o g p ) O(n\space logp) O(n logp),需要转换为线性计算。

因为 p p p 是质数,所以可以将 p p p 表示为 k ∗ i + r k*i+r ki+r ( 1 < r < i < p ) (1<r<i<p) (1<r<i<p),其含义为 k k k p / i p/i p/i 的商, r r r 是余数。

k ∗ i + r ≡ 0     ( m o d    p ) k*i+r \equiv 0\space\space\space (mod \space\space p) \\ ki+r0   (mod  p)
等式两侧同时乘上 i − 1 i^{-1} i1 r − 1 r^{-1} r1,得:

k ∗ r − 1 + i − 1 ≡ 0     ( m o d    p ) i − 1 ≡ − k ∗ r − 1     ( m o d    p ) i − 1 ≡ − ⌊ p i ⌋ ∗ ( p    m o d    i ) − 1     ( m o d    p ) k*r^{-1}+i^{-1} \equiv 0\space\space\space (mod \space\space p) \\ i^{-1}\equiv -k*r^{-1}\space\space\space (mod \space\space p) \\ i^{-1}\equiv -\lfloor\frac{p}{i}\rfloor * (p\space\space mod \space\space i)^{-1}\space\space\space (mod \space\space p) \\ kr1+i10   (mod  p)i1kr1   (mod  p)i1ip(p  mod  i)1   (mod  p)

可以看出 i i i 的逆元可以由 p    m o d    i p\space\space mod \space\space i p  mod  i 的逆元递推得到。

需要将 1 1 1 的逆元初始化为 1 1 1,因为 1 − 1 = 1 p − 2    %    p = 1 1^{-1} = 1^{p-2} \space\space\%\space\space p = 1 11=1p2  %  p=1

注意负数取模, − ⌊ p i ⌋ -\lfloor\frac{p}{i}\rfloor ip p p p 取模需要先将负数 + p +p +p 使其变为整数再进行取模操作。

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 3e6+10;

LL inv[N], n, p;

int main()
{
	scanf ("%lld%lld", &n, &p); // cin 会TLE 
	
	inv[1] = 1; puts ("1");
	for (int i = 2;i <= n;i ++) 
		inv[i] = (p - p/i) * inv[p % i] % p,
		printf ("%lld\n", inv[i]); // cout 会TLE 

	return 0;
}

注意,数论题一般都要开LL。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不牌不改

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值