组合数+逆元 (方法整理)

一.逆元(inv)

当求解公式:(a/b)%m 时,因b可能会过大,会出现爆精度的情况,所以需变除法为乘法:

设c是b的逆元,则有b*c≡1(mod m);则(a/b)%m = (a/b)*1%m = (a/b)*b*c%m = a*c(mod m);

即a/b的模等于a*b的逆元的模,逆元就是这样应用的;

二.求逆元的方法:

  1.扩展欧几里得算法

  2.费马小定理inv(a)=pow(2,mod-2)%mod;

  3.逆元线性筛:

const int mod = 1e;
const int maxn = 10005;
int inv[maxn];
inv[1] = 1;
for(int i = 2; i < 10000; i++)
    inv[i] = inv[mod % i] * (mod - mod / i) % mod;

  4.阶乘逆元线性筛

inv[N]=qpow(fac[N],mod-2);
for(ll i=N-1;i>=0;i--)
    inv[i]=(inv[i+1]*(i+1))%mod;

三.组合数的求法

  1.o(n^2)递推 (适用于n较小的情况的快速写法)

C[n][m]=C[n-1][m-1]+C[n-1][m];

  2.o(n)处理阶乘和逆元,运用公式求解:o(n)

  C(n,m)=n!/(m!*(n-m)!)

typedef long long ll;
const int mod=1e9+7;
const int N=1e6+10;
ll fac[N],inv_fac[N];
ll qpow(ll a,ll b){ 
    ll res=1,tmp=a;
    while(b){
        if(b&1) (res*=tmp)%=mod;
        (tmp*=tmp)%=mod;
        b>>=1;
    }
    return res;
}
void inin(){
    fac[1]=fac[0]=1;
    for(int i=2;i<N;i++) fac[i]=1ll*fac[i-1]*i%mod;
    inv_fac[N-1]=qpow(N-1,mod-2);
    for(int i=N-2;i>=0;i--) inv_fac[i]=(inv_fac[i+1]*(i+1))%mod;
}
ll C(int n,int m){//0<=m<=n
    if(m==0||m==n) return 1;
    ll res=((fac[n]*inv_fac[m]%mod)*inv_fac[n-m])%mod;
    return res;
}

  3.递推求解组合数,适用于n较大的情况,同时在递推的时候,相邻两项有递推关系

  即运用公式来进行一系列变换:C(n,m)=n!/(m!*(n-m)!)

  例如:

C[n+1][m+1]=C[n][m]*(n+1)/(m+1);
C[n+1][m+1]=C[n][m]*(n+1)*inv[m+1]; 

 

转载于:https://www.cnblogs.com/vainglory/p/9678488.html

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值