逆元求组合数

逆元简介

同余符号 ≡
先bb一下 ≡,这个符号有三个意思,再这里用到的意思为“同余符号”。≡ 的介绍
两个整数a,b,若它们除以整数m所得的余数相等,则称a,b对于模m同余
记作a≡b(mod m)
读作a同余于b模m,或读作a与b关于模m同余。
比如26≡14(mod 12)。
什么是逆元
如果一个线性同余方程 ax ≡ 1(mod b) ,则 x 称为 a mod b 的逆元.
逆元的含义
模b意义下,1个数a如果有逆元x,那么除以a相当于乘以x。
也就是(a/b)%p=(ax)%p=(a%p)(b%p)%p

那么问题来了,这逆元有啥用吗,这个问题问的好啊
如果我们要求一个组合数C(n,m)%p=(n!/(n-m)!*m!)%p,但是取模的性质对于除法不适用啊。
在这里插入图片描述
但当这个n和m很大时又不得不取模,不取模就会溢出。所以就可以用逆元来把乘法代替除法。

怎么求逆元

暴力O( P)求逆元
先举这个最简单最暴力的方法,这样便于理解逆元。具体思路就是枚举1~p-1,检查是否有符合条件的a*x=1(mod p)。时间复杂度为O(P)。

#include <iostream>
#include <cstdio>
using namespace std;
int main()
{
    int a,p;
    cin>>a>>p;
    for(int x=1;x<p;x++){
        if(x*a%p==1) {
            printf("%d\n",x);
            break;
        }
    }
    return 0;
}

扩展欧几里得法
给定模数p,求a的逆元相当于求解ax=1(mod p)
这个方程可以转化为ax-py=1
然后套用求二元一次方程的方法,用扩展欧几里得算法求得一组x0,y0和gcd (最大公约)
检查gcd是否为1
gcd不为1则说明逆元不存在 ,若为1,则把x0调整到0~m-1的范围中即可
( ①:extgcd 目的 求 x ,y ; ②:逆元 目的 求 x )
一个数有逆元的充分必要条件是gcd(a,n)=1,如果gcd(a,n)>1,则不存在逆元

int exgcd(int a,int b,int &x,int &y)
{
    if(b==0) {
        x=1,y=0;
        return a;
    }
    int r = exgcd(b,a%b,x,y);
    int t = x;
        x = y;
        y = t - a/b*y;
    return r;
}

快速幂法

这个要运用 费马小定理 :
在这里插入图片描述
再看看推导过程:
在这里插入图片描述
由以上推导就可以通过求一个幂运算很简单的求出逆元辽。

上一个代码,具体功能就是求n和m的组合数mod1e9+7

#include<iostream>
#include<cstdio>
using namespace std;
typedef long long ll;
const ll Mod=1e9 + 7;
ll fac[100010];//存阶乘 
ll inv[100010];//存逆元 

ll quick(ll a,int b)//快速幂算法 
{
	ll ans=1;
	while(b)
	{
		if(b&1)ans=(ans*a)%Mod;
		a=a*a%Mod;
		b>>=1;
	}
	return ans;
}

void getfac()
{
	fac[0]=inv[0]=1;
	for(int i=1;i<=100000;i++)
	{
		fac[i]=fac[i-1]*i%Mod;
		inv[i]=quick(fac[i],Mod-2); 
	}
}

ll getans(ll n,ll m)
{
	return fac[n]*inv[n-m]%Mod*inv[m]%Mod;
}

int main()
{
	getfac();//初始化
	
	ll n,m;
	while(cin>>n>>m)
	{
		ll ans=getans(n,m);
		cout<<ans<<endl;
	} 
}

Lucas定理

对于大组合数取模,n,m不大于10 ^ 5的话,用逆元的方法,可以解决。对于n,m大于10 ^ 5的话,那么要求p<10 ^ 5,这样就是Lucas定理了,将n,m转化到10^5以内解。
Lucas定理是用来求 c(n,m) mod p,p为素数的值。
C(n,m)%p=C(n/p,m/p)*C(n%p,m%p)%p
也就是Lucas(n,m)%p=Lucas(n/p,m/p)*C(n%p,m%p)%p
求上式的时候,Lucas递归出口为m=0时返回1,原因是因为Lucas(a,0,q)=1;
模板:

#include <cstdio>  
#include <iostream>  
#include <cmath>  
#include <cstring>  
#include <algorithm>  
using namespace std;  
#define maxn 100010  
typedef long long LL;  
LL m,n,p;  
LL Pow(LL a,LL b,LL mod)  
{  
    LL ans=1;  
    while(b)  
    {  
        if(b&1)ans=(ans*a)%mod;
        a=a*a%mod;
        b>>=1;
    }  
    return ans;  
}  
LL C(LL n,LL m)  
{  
    if(n<m)  
        return 0;  
    LL ans=1;  
    for(int i=1;i<=m;i++)  
    {  
        ans=ans*(((n-m+i)%p)*Pow(i,p-2,p)%p)%p;  
    }  
    return ans;  
}  
LL Lucas(LL n,LL m)  
{  
    if(m==0)  
        return 1;  
    return (Lucas(n/p,m/p)*C(n%p,m%p))%p;  
}  
int main()  
{  
    int t;  
    scanf("%d",&t);  
    while(t--)  
    {  
        scanf("%lld%lld%lld",&n,&m,&p);  
        printf("%lld\n",Lucas(n,m));  
    }  
    return 0;  
} 
  • 5
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值