组合数+逆元

小圆前辈的暴力枚举

这个题是学校校赛学长出的一道题:小圆前辈的暴力枚举
然后不得不说要称赞吐槽 一下题目的名字,好一个暴力枚举,好一个不就是暴力枚举一下吗!
由于显示问题,下面将所有的乘号用x替换
题目大意:(NxM)的矩阵,任意放入K个棋子(K=0,1,2,3…N*M)求其中有多少种情况可以做到每行每列只有一枚棋子,结果对998244353取模。暴力复杂度O(2^nm)(1<=N,M<=1000)建议暴力枚举

首先我们可以知道,在一个NxN的矩阵中符合要求的放下N个棋子方法种数ans=N!(N的阶乘),于是利用这个规律当在N*M的矩阵中放下K个棋子时,ans=C(n,k)xC(m,k)xK!。其中C为组合数。为什么可以这么求呢,可以看成在N行中取出K行C(n,k),M列中取出K列C(m,k),组成一个KxK的矩阵来放入这K个棋子。
解法思路不难,但实现过程中还会出现一个问题
组合数求取公式组合数三种求法中会出现大数的除法,会导致结果不准确,那么我们就要利用到逆元这个工具:逆元:a/b%p=(a*(b^(p-2))%p)%p 嗯,这是来自于费马小定理的推论 别问为什么,问就是不知道 可以跟这位大佬学一下逆元(关于除法取模)

然后贴上代码

#include<stdio.h>
#include<algorithm>
using namespace std;
#define ll long long
ll mod=998244353;
ll y,n,m;//y=n!*m! 
ll ksc(ll a,ll b)//快速乘 
{
	ll ans=0;
	while(b)
	{
		if(b&1)	ans=(ans+a)%mod;
		a=(a+a)%mod;
		b>>=1;
	}
	return ans;
}


ll ksm(ll a,ll b)//快速幂
{
	ll ans=1;
	while(b)
	{
		if(b&1)	ans=ksc(ans,a);
		a=ksc(a,a);
		b>>=1;
	}
	return ans;
}

ll fun(int k,int a)
{
	ll b=1,c=1,x,i,t,ans; 
	//组合数 C(n,m)=n!/m!*(n-m)! 
	for(i=2;i<=n-k;i++) b=ksc(b,i); 
	for(i=2;i<=m-k;i++)	c=ksc(c,i);
	x=ksc(b,c);
	x=ksc(x,a);
	
	//逆元:a/b%p=(a*(b^(p-2))%p)%p
	t=ksm(x,mod-2)%mod;
	ans=ksc(y,t)%mod;
	return ans%mod; 
}

int main()
{
	ll i,x1,x2,k,t,ans=1;//x1,x2分别代表n,m的阶乘
	x1=x2=1;
	scanf("%lld %lld",&n,&m);
	for(i=2;i<=n;i++)   x1=ksc(x1,i); 
	for(i=2;i<=m;i++)	x2=ksc(x2,i);
	y=ksc(x1,x2);
	 
	k=min(n,m);t=1;
	for(i=1;i<=k;i++)
	{
		t=ksc(t,i);
		ans+=fun(i,t);
		ans%=mod; 
	}
	
	printf("%lld",ans);
	return 0;
} 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值