hdu 1394 树状数组

本文介绍了一种利用线段树结构解决逆序对问题的算法,通过从后往前遍历数组并更新线段树,实现O(n log n)的时间复杂度。详细解释了算法思路、代码实现及应用实例。

思路:从后面往前面统计,每次先sum+=Sum(num[i]+1),然后在update(num[i]+1,1)。这样每次Sum每次加的个数就是num[i]的逆序对个数。

每次从队首调一个元素到队尾,逆序对的变化为sum=sum-num[i]+n-num[i]+1。减少的个数为num[i],增加的个数为n-num[i]-1。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define Maxn 5010
#define lowbit(x) (x&(-x))
using namespace std;
int C[Maxn],num[Maxn],n;
void init()
{
    memset(C,0,sizeof(C));
}
int Sum(int pos)
{
    int sum=0;
    while(pos>0)
    {
        sum+=C[pos];
        pos-=lowbit(pos);
    }
    return sum;
}
void update(int pos)
{
    while(pos<=n)
    {
        C[pos]++;
        pos+=lowbit(pos);
    }
}
int main()
{
    int i,j;
    while(scanf("%d",&n)!=EOF)
    {
        init();
        for(i=1;i<=n;i++)
             scanf("%d",num+i);
        int sum=0,ans;
        for(i=n;i>=1;i--)
        {
            sum+=Sum(num[i]+1);
            update(num[i]+1);
        }
        ans=sum;
        for(i=1;i<=n;i++)
        {
            sum=sum-num[i]+n-num[i]-1;
            if(sum<ans)
                ans=sum;
        }
        printf("%d\n",ans);
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/wangfang20/p/3226401.html

【Copula光伏功率预测】基于单调广义学习系统(MBLS)和Copula理论的时空概率预测模型(Matlab代码实现)内容概要:本文介绍了一个基于单调广义学习系统(MBLS)和Copula理论的时空概率预测模型,用于光伏功率预测,并提供了相应的Matlab代码实现。该模型结合了MBLS在非线性映射和快速学习方面的优势,以及Copula函数在刻画多变量随机变量之间复杂相关性结构的能力,能够有效处理光伏发电的不确定性与时空相关性,从而提高预测精度和可靠性。此外,文中还列举了多个相关领域的研究案例和技术应用,展示了其在电力系统、机器学习、路径规划等多个方向的广泛应用前景。; 适合人群:具备一定编程基础和电力系统背景知识,熟悉Matlab编程语言,从事新能源发电预测、电力系统优化等相关领域研究的研发人员和高校师生。; 使用场景及目标:①应用于光伏电站的实际功率预测中,提升电网调度的准确性和稳定性;②作为学术研究工具,探索新型预测算法在处理非线性和不确定性问题上的潜力;③为其他可再生能源如风力发电的概率预测提供借鉴和参考。; 阅读建议:建议读者结合实际数据进行实验验证,深入理解MBLS和Copula理论的核心思想及其实现细节,同时关注模型参数的选择对预测性能的影响,以期达到最佳的应用效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值