思路:从后面往前面统计,每次先sum+=Sum(num[i]+1),然后在update(num[i]+1,1)。这样每次Sum每次加的个数就是num[i]的逆序对个数。
每次从队首调一个元素到队尾,逆序对的变化为sum=sum-num[i]+n-num[i]+1。减少的个数为num[i],增加的个数为n-num[i]-1。
#include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #define Maxn 5010 #define lowbit(x) (x&(-x)) using namespace std; int C[Maxn],num[Maxn],n; void init() { memset(C,0,sizeof(C)); } int Sum(int pos) { int sum=0; while(pos>0) { sum+=C[pos]; pos-=lowbit(pos); } return sum; } void update(int pos) { while(pos<=n) { C[pos]++; pos+=lowbit(pos); } } int main() { int i,j; while(scanf("%d",&n)!=EOF) { init(); for(i=1;i<=n;i++) scanf("%d",num+i); int sum=0,ans; for(i=n;i>=1;i--) { sum+=Sum(num[i]+1); update(num[i]+1); } ans=sum; for(i=1;i<=n;i++) { sum=sum-num[i]+n-num[i]-1; if(sum<ans) ans=sum; } printf("%d\n",ans); } return 0; }
本文介绍了一种利用线段树结构解决逆序对问题的算法,通过从后往前遍历数组并更新线段树,实现O(n log n)的时间复杂度。详细解释了算法思路、代码实现及应用实例。
137

被折叠的 条评论
为什么被折叠?



