今天是第一次开通博客,没有什么写作经验,想通过这样的一种方式锻炼一下自己并且和大家分享学习的经验。
以前很长一段时间研究兴趣都停留在信号处理方面,使用最多的编程语言就是matlab。确实它给我编写程序带来很多便利,而且也很适用于科研。但是也有天生的缺陷,就是代码执行效率不高,而且可移植性较差。后来由于硬件资源的升级换代使得机器学习越来越火,我现在的研究兴趣也在转移到这上面来。当然随之而来的就是matlab在机器学习上面应用的弊端越来越明显,因此便开始投身python语言。
很多人感觉这可能是比较孤立的两个语言和两个研究方向,但是随着研究程度日益加深才发现有很多共同之处。首先讲一下我对现在很多工作的理解,无非就是在提特征然后分类或者回归。之前信号处理将更多的时间集中在特征提取方面,而现在的机器学习更强调的是建立模型和优化参数。我想以后可以将这两种语言结合起来,把这两个方面的内容也融合起来,发挥各自的优势。
最后谈一下人工智能,机器学习和深度学习之间的关系。很多人对这些概念比较含糊,虽然也经常在听。在我看来人工智能的范畴更广一些,它包含很大一部分的机器学习方法,比如线性回归,逻辑回归,决策树,随机森林。支持向量机,神经网络等。而深度学习又属于机器学习的一个范畴,专门指的是神经网络。只不过现在可以将神经网络的隐含层数目做得很高(更深),隐含层节点数目做的很多(更宽)。更宽的模型具有更好的可解释性和记忆能力,更深的模型具有更好的推理能力。