数据集的划分

在机器学习中,数据集通常划分为训练集、验证集和测试集,用于模型训练、选择和评估。留出法、交叉验证法和自助法是常见的划分方法。留出法适用于数据量较小的情况;交叉验证法能更充分地利用数据,但计算成本高;自助法在数据不足时提供多个训练集,但可能导致数据分布偏斜。
摘要由CSDN通过智能技术生成

在机器学习算法中,我们通常将原始数据集划分为三个部分(划分要尽可能保持数据分布的一致性):

(1)Training set(测试集): 训练模型

(2)Validation set(验证集): 选择模型

(3)Testing set(测试集): 评估模型

其中Validation set的作用是用来避免过拟合的。在训练过程中,我们通常用它来确定一些超参数(例:根据Validation set的accuracy来确定early stoping的epoch大小,根据Validation set确定learning rate等等)。之所以不用Testing set,是因为随着训练的进行,网络会慢慢过拟合测试集,导致最后的Testing set没有参考意义。因此Training set用来计算梯度更新权重,即训练模型,Validation set用来做模型选择,Testing set则给出一个accuracy以判断网络性能的好坏。


数据集的划分通常有三种方法:

(1)留出法(Hold-out)

​ 将数据集\(D\)划分为两个互斥的集合,其中一个集合作为训练集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值