asarray java_np.array()和np.asarray()的区别

主要区别在于 np.array (默认情况下)将会copy该对象,而 np.asarray 除非必要,否则不会copy该对象。

array和asarray都可以将结构数据转化为ndarray,但是主要区别就是当数据源是ndarray时,array仍然会copy出一个副本,占用新的内存,但asarray不会。

举例说明:

import numpy as np

#example 1:

data1=[[1,1,1],[1,1,1],[1,1,1]]

arr2=np.array(data1)

arr3=np.asarray(data1)

data1[1][1]=2

print 'data1:\n',data1

print 'arr2:\n',arr2

print 'arr3:\n',arr3

输出:

data1:

[[1, 1, 1], [1, 2, 1], [1, 1, 1]]

arr2:

[[1 1 1]

[1 1 1]

[1 1 1]]

arr3:

[[1 1 1]

[1 1 1]

[1 1 1]]

可见array和asarray没有区别,都对元数据进行了复制。

import numpy as np

#example 2:

arr1=np.ones((3,3))

arr2=np.array(arr1)

arr3=np.asarray(arr1)

arr1[1]=2

print 'arr1:\n',arr1

print 'arr2:\n',arr2

print 'arr3:\n',arr3

输出:

arr1:

[[ 1. 1. 1.]

[ 2. 2. 2.]

[ 1. 1. 1.]]

arr2:

[[ 1. 1. 1.]

[ 1. 1. 1.]

[ 1. 1. 1.]]

arr3:

[[ 1. 1. 1.]

[ 2. 2. 2.]

[ 1. 1. 1.]]

此时两者才表现出区别。修改了arr1,arr3也会跟着修改。

Syntax

np.asarray(a, dtype=None, order=None)

将结构数据转化为ndarray。

Parameters:

a : array_like

dtype : data-type, optional

order : {‘C’, ‘F’}, optional

Returns:

out : ndarray

与 np.array 的不同

np.asarray 的定义:

def asarray(a, dtype=None, order=None):

return array(a, dtype, copy=False, order=order)

而 np.array 的定义:

def array(a, dtype=None, order=None):

return array(a, dtype, copy=True, order=order)

简而言之:

主要区别在于 np.array (默认情况下)将会copy该对象,而 np.asarray 除非必要,否则不会copy该对象。

Code

# 将list转换为ndarray

a = [1, 2]

print(np.asarray(a)) # array([1, 2])

# 如果对象本身即为ndarray,且不改变dtype,则不会copy之

a = np.array([1, 2])

print(np.asarray(a) is a) # True

# 如果对象本身即为ndarray,且改变dtype,则还是会copy之

a = np.array([1, 2], dtype=np.float32)

print(np.asarray(a, dtype=np.float32) is a) # True

print(np.asarray(a, dtype=np.float64) is a) # False

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值