算法导论(七)——NP、java支持、参考

本文探讨了NP完全性问题,包括图着色、装箱和Hamiltonian回路等,并介绍了如何使用近似算法解决这些问题。文章还提到了Java中的算法库jga,用于集合操作,以及JUNG库,它提供了图的实现和算法。最后,给出了相关参考资料链接。
摘要由CSDN通过智能技术生成

NP完全性问题

    如果对一问题证明其是NP完全性的,就可以设计一近似算法,而不去求最优解

    NP问题是否存在有效算法是未知的,且如果任何一个问题存在有效的算法,则其他都存在有效算法

图着色问题:

        相邻顶点颜色不同情况下所用的最小颜色数

        N门考试,每门一个小时,而同一学生选修课程不能同时进行,问最少多少小时结束考试

装箱:

        任意多个容量为1的箱子和大小为Si(0<Si<1)的物体,求装下所有物体的箱子数

    带罚款的作业调度

        逾期未完成会罚款

Hamiltonian回路    

        经过每一顶点一次的周游路线,如旅行商问题<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值