欧拉函数:小于n且与n互质的数的个数(包括1),记为φ(n)
欧拉函数的性质:
♦n为质数
φ(n) = n-1
♦gcd(n,p) = 1
φ(n*p)=φ(n)*φ(p)
♦p为质数,若
♦n mod p =0
φ(n*p)=φ(n)*p
♦n mod p!=0
φ(n*p)=φ(n)*φ(p)
♦n = p1 k1 * p2 k2 *...*pmkm = ∏pi ki
φ(n) = n*(1 - 1/p1)*(1 - 1/p2)*...*(1 - 1/pm) = n*∏(1 - 1/pi)
♦n=pk
φ(n)=(p-1)*pk-1
♦gcd(a,m)=1
aφ(m) =1(mod m)
♦小于n且与n互质的数的和
S = n*(φ(n)/2) (n>1)
当n>2 φ(n)为偶数
♦n为奇数时
φ(2*n) = φ(n)
♦
∑ φ(d) = n
d|n
♦
φ(n) = ∑ μ(d)/d
d|n
∑d|nϕ(