欧拉函数

欧拉函数:小于n且与n互质的数的个数(包括1),记为φ(n)

欧拉函数的性质:

♦n为质数                                                             

     φ(n) = n-1

♦gcd(n,p) = 1                                                      

     φ(n*p)=φ(n)*φ(p)

♦p为质数,若                                                    

     ♦n mod p =0

          φ(n*p)=φ(n)*p

     ♦n mod p!=0

          φ(n*p)=φ(n)*φ(p)

♦n = p1 k1  * p2 k2  *...*pmkm = ∏pki                       

     φ(n) = n*(1 - 1/p1)*(1 - 1/p2)*...*(1 - 1/pm) = n*∏(1 - 1/pi)

♦n=pk                                                                              

     φ(n)=(p-1)*pk-1

♦gcd(a,m)=1                                                      

     aφ(m) =1(mod m)

♦小于n且与n互质的数的和                                

     S = n*(φ(n)/2)  (n>1)

     当n>2  φ(n)为偶数

♦n为奇数时                                                        

     φ(2*n) = φ(n)

♦                                                                        

     φ(d) = n

      d|n

♦                                                                          

     φ(n) = μ(d)/d

                d|n

d|nϕ(

转载于:https://www.cnblogs.com/ljinggg/p/11453463.html

<think>好的,我需要帮助用户了解欧拉函数的算法实现。首先,我要回顾一下欧拉函数的定义。根据引用[2]和[3],欧拉函数&phi;(n)是小于n的正整n质的目。例如&phi;(8)=4,因为1,3,5,7和8质。 接下来,用户想知道如何实现欧拉函数的算法。根据引用[3],欧拉函数的通式是&phi;(n) = n × Π(1 - 1/p),其中p是n的所有不同的质因。所以,实现这个函数的关键步骤应该是分解质因,然后应用这个公式。 首先,分解质因。我需要找出n的所有不同质因。例如,对于n=12,质因2和3,所以&phi;(12)=12×(1-1/2(1-1/3)=4。这一步可以通过试除法来实现,从2开始逐个试除,直到平方根为止。 然后,应用公式。每找到一个质因p,就乘上(1-1/p),最后乘以n。需要注意的是,如果n最后剩下一个大于1的质,也需要处理。 现在考虑代码实现。用户提供的引用[1]提到使用BigIntegers处理非常大的字,但用户现在可能需要一个基础的实现方法。假设用户使用Python,可以写一个函数,首先分解质因,然后计算结果。 需要注意的几个点:1. 处理n=1的情况,&phi;(1)=12. 在分解质因时,避免重复因,所以每次找到一个质因后,要彻底除去所有该因。例如,分解12时,先除以2得到3,再除以3,得到1,这样就不会重复计算2。 测试一下例子是否正确。例如,&phi;(8)=4,&phi;(12)=4,&phi;(7)=6(质的情况)。代码是否能正确处理这些情况? 另外,引用[1]提到了对大的处理,可能需要更高效的质因分解方法,比如Pollard's Rho算法,但对于一般情况,试除法可能足够,尤其是当n不是特别大的时候。不过,试除法对于大来说效率不高,这时候需要考虑优化算法,但用户可能先需要一个基础实现。 可能的错误点:在分解质因时,忘记处理剩余的n可能也是质的情况。比如,n=13,分解到最后的n=13,应该被算作一个质因。 现在,把这些步骤整理成代码。编写一个函数euler_phi(n),返回&phi;(n)的值。首先处理n=0或1的特殊情况。然后对n进行质因分解,记录所有不同的质因,然后应用公式。 最后,生成相关问题。根据欧拉函数的应用,比如欧拉定理,或者优化算法的方法,或者比较不同分解质因的方法的效率等。 总结,我需要给出欧拉函数的定义、算法步骤、代码实现以及相关问题。</think>### 欧拉函数算法实现 #### 1. 定义公式 欧拉函数 $&phi;(n)$ 定义为**小于 $n$ 且 $n$ 质的正整个数**。其通式为: $$ &phi;(n) = n \cdot \prod_{p \mid n} \left(1 - \frac{1}{p}\right) $$ 其中 $p$ 是 $n$ 的质因[^3]。 #### 2. 算法步骤 1. **质因分解**:将 $n$ 分解为不同质因的乘积。 2. **应用公式**:遍历每个质因 $p$,计算 $\prod \left(1 - \frac{1}{p}\right)$,最后乘以 $n$。 #### 3. 代码实现(Python) ```python def euler_phi(n): if n <= 0: return 0 result = n # 质因分解 p = 2 while p * p <= n: if n % p == 0: while n % p == 0: n //= p result -= result // p # 等价于 result *= (1 - 1/p) p += 1 # 处理剩余的质因(如n是质的情况) if n > 1: result -= result // n return result ``` #### 示例验证 - **输入:8** 质因2计算过程:$8 \cdot (1 - 1/2) = 4$,输出为 4。 - **输入:7** 7 是质计算过程:$7 \cdot (1 - 1/7) = 6$,输出为 6[^2]。 #### 4. 优化方向 - **大处理**:使用 Pollard's Rho 算法加速质因分解[^1]。 - **预计算表**:用筛法预存质,减少试除次
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值