题目一 求欧拉函数
解题思路
- 分解质因数;
- 代入公式计算即可(注意要防止计算出小数是结果不准);
代码实现
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
void Euler(int n)
{
int sq = sqrt(n);
int t = n;
for(int i = 2;i <= sq;i ++ )//分解质因数;
{
if(n % i == 0)
{
t = t - t / i;// 不能用t = t * (1 - 1 / i),因为会计算出小数使结果不准;
while(n % i == 0)
{
n /= i;
}
}
}
if(n > 1)
{
t = t - t / n;
}
cout << t << endl;
}
int main()
{
int n, a;
cin >> n;
while(n -- )
{
scanf("%d", &a);
Euler(a);
}
return 0;
}
题目二 线性筛法求欧拉函数
解题思路
重要数学公式:
- 欧拉函数 ϕ(N) ,如果N为质数,则ϕ(N) = N - 1(代入一般公式可得);
- ϕ(NM), 如果N,M互为质数,则ϕ(NM) = ϕ(N) * ϕ(M);
解题步骤:
- 代入线性筛法求质数的模板;
- 根据条件,结合上述数学公式记录每个数的欧拉函数;
- 累加即可;
代码实现
#include<iostream>
using namespace std;
const int N = 1e6 + 10;
bool st[N];//判断是否被筛掉
int primes[N];//存质数
int prime_nums[N];//存储每个数的欧拉函数
int cnt;//存质数个数
void get_primes(int n)
{
prime_nums[1] = 1;//1的欧拉函数为1(定义)
for(int i = 2;i <= n;i ++ )
{
if(!st[i])
{
primes[cnt ++ ] = i;
prime_nums[i] = i - 1;//质数的欧拉函数为其本身减一
}
for(int j = 0;primes[j] <= n / i;j ++ )
{
st[primes[j] * i] = true;
if(i % primes[j] == 0)//primes[j]是i的最小质因数(下以pj代指primes[j])
{
prime_nums[primes[j] * i] = primes[j] * prime_nums[i];
//pj是i最小质因数,若i分解质因数得p1^e1*^p2^e2^...pk^ek^;
//则pj*i分解质因数等于p1^e1^*p2^e2^...pk^ek^(e1 ... ek某处+1),底数不变,指数某处+1;
//代入欧拉公式等于pj*i*(1-1/p1)*(1-1/p2)...(1-1/pk) == pj*prime_nums[i];
//也就是说pj等于p1,p2...pk中的一个数!!!
break;
}
//pj和i互质:
prime_nums[primes[j] * i] = prime_nums[i] * (primes[j] - 1);
//pj不是i最小质因数,若i分解质因数得p1^e1^*p2^e2^...pk^ek^;
//则pj*i分解质因数等于pj*p1^e1^*p2^e2^...pk^ek^;
//代入欧拉公式等于pj*i*(1-1/pj)*(1-1/p1)*(1-1/p2)...(1-1/pk) == (pj-1)*prime_nums[i];
//也就是说pj不等于p1,p2...pk中的任何一个数!!!
}
}
long long res = 0;
for(int i = 1;i <= n;i ++ )
{
res += prime_nums[i];
}
cout << res;
}
int main()
{
int n;
cin >> n;
get_primes(n);
return 0;
}