题面:
求所有 满足 a+b<=n 且 (a+b)|(a*b) 的有序对 (a,b)。
n<=10^14.
sol:
推一推就好啦,设 d = gcd(a,b) , a'=a/d , b'=b/d。
那么题目相当于要求 (a'+b')*d <=n 且 (a'+b') | d 的三元组 (a',b',d)。
可以发现 gcd(a',b')=1,所以枚举一下 a'+b' (显然最大只有sqrt(n)),然后算一下贡献就好啦。
/*
∑∑[i+j<=n] * [i+j | i*j]
∑∑[i'+j'<=n/d] * [i'+j' | d]
∑φ(i) * [n/i^2]
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
const int N=10000000;
int zs[N/10+5],t=0,phi[N+5],m;
bool v[N+5];
ll ans,n;
inline void init(){
phi[1]=1;
for(int i=2;i<=m;i++){
if(!v[i]) zs[++t]=i,phi[i]=i-1;
for(int j=1,u;j<=t&&(u=zs[j]*i)<=m;j++){
v[u]=1;
if(!(i%zs[j])){ phi[u]=phi[i]*zs[j]; break;}
phi[u]=phi[i]*(zs[j]-1);
}
}
}
inline void solve(){
for(int i=2;i<=m;i++) ans+=phi[i]*(n/(i*(ll)i));
}
int main(){
scanf("%lld",&n),m=(int)floor(sqrt(n+0.5)),init();
solve(),printf("%lld\n",ans);
return 0;
}