Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 13677 | Accepted: 9697 |
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
Source
矩阵乘法的应用
一个有趣的理解:结果矩阵第m行与第n列交叉位置的那个值,等于第一个矩阵第m行与第二个矩阵第n列,对应位置的每个值的乘积之和
白书上的一句:把一个向量v变成另一个向量v1,并且v1的每一个分量都是v各个分量的线性组合,考虑使用矩阵乘法
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; const int MOD=1e4; typedef long long ll; inline int read(){ char c=getchar();int x=0,f=1; while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();} while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();} return x*f; } int n; struct mat{ int r,c; int m[3][3]; mat(){r=2;c=2;memset(m,0,sizeof(m));} }im,f; mat mult(mat x,mat y){ mat t; for(int i=1;i<=x.r;i++) for(int k=1;k<=x.c;k++) if(x.m[i][k]) for(int j=1;j<=y.c;j++) t.m[i][j]=(t.m[i][j]+x.m[i][k]*y.m[k][j]%MOD)%MOD; return t; } void init(){ for(int i=1;i<=im.c;i++) for(int j=1;j<=im.r;j++) if(i==j) im.m[i][j]=1; f.m[1][1]=1;f.m[1][2]=1; f.m[2][1]=1;f.m[2][2]=0; } int main(){ init(); while((n=read())!=-1){ mat ans=im,t=f; for(;n;n>>=1,t=mult(t,t)) if(n&1) ans=mult(ans,t); printf("%d\n",ans.m[1][2]); } }