POJ 3070 (矩阵快速幂,矩阵快速幂求斐波那契)

点击打开链接

//此题提供了用矩阵快速幂计算斐波那契的数列的方式
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
struct matrix{
	int data[2][2];
};
struct matrix Mul(struct matrix x,struct matrix y)
{
	struct matrix temp;
	temp.data[0][0]=(x.data[0][0]*y.data[0][0]+x.data[0][1]*y.data[1][0])%10000;
	temp.data[0][1]=(x.data[0][0]*y.data[0][1]+x.data[0][1]*y.data[1][1])%10000;
	temp.data[1][0]=(x.data[1][0]*y.data[0][0]+x.data[1][1]*y.data[1][0])%10000;
	temp.data[1][1]=(x.data[1][0]*y.data[0][1]+x.data[1][1]*y.data[1][1])%10000;
	return temp;
}
struct matrix MatrixPow(struct matrix mar,int n){
	if(n==1)
		return mar;
	struct matrix temp;
	temp=MatrixPow(mar,n/2);
	if(n%2==0)
		return Mul(temp,temp);
	else
		return Mul(Mul(temp,temp),mar);
}
int main(){
	int n;
	struct matrix mar;
	struct matrix result;
	mar.data[0][0]=mar.data[0][1]=mar.data[1][0]=1;
	mar.data[1][1]=0;
	while(cin>>n&&n>=0){
		if(n==0){
			cout<<0<<'\n';
			continue;
		}
        result=MatrixPow(mar,n);
        cout<<result.data[0][1]<<'\n';
	}  
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值