[机器学习入门篇]-Logistic函数与Softmax函数

 

1.Logistic函数

 

在维基百科中,对logistic函数这样介绍道:

  A logistic function or logistic curve is a common "S" shape (sigmoid curve), with equation: $$f(x)=\frac{L}{1+e^{-k(x-x0)}}$$

  Logistic函数呈'S'型曲线,当x趋于-∞时函数趋于0,当x趋于+∞时函数趋于L。

standard logistic function i.e. k=1, x0=0

2.Softmax函数

 

softmax函数定义如下:

  In mathematics, the softmax function, or normalized exponential function,is a generalization of the logistic function that "squashes" a K-dimensional vector $\mathbf{Z}$ of arbitrary real values to a K-dimensional vector $\sigma(\textbf{Z})$ of real values in the range (0, 1) that add up to 1. The function is given by

  $$\sigma(\textbf{Z})_j=\frac{e^Z_j}{\sum_{k=1}^{K}e^{Z_k}}\quad j=1,2,...,K$$

  在数学定义中,Softmax函数是对Logistic函数的一般化。它的作用是将一个K维实数向量的各分量值映射到(0,1),且各分量值之和为1。

3.对比

从定义中不难看出,Softmax函数是对Logistic函数的延伸扩展。拿Sigmoid函数(Logistic函数的一种)为例,它将单个变量的取值变换到(0,1),而Softmax函数是Sigmoid函数的多维形式,参数不是单个变量而是多维向量。由于维度不同,Logistic函数常被应用于回归问题(称为Logistic回归)和神经网络的激活函数。而Softmax函数常被用于神经网络的最后一层,进行多分类。

4.参考资料

更详细的介绍参考:http://www.cnblogs.com/maybe2030/p/5678387.html?utm_source=tuicool&utm_medium=referral

z {\displaystyle \mathbf {z} } \mathbf {z} of arbitrary real values to a K-dimensional vector σ ( z ) {\displaystyle \sigma (\mathbf {z} )} \sigma (\mathbf {z} ) of real values in the range (0, 1) that add up to 1. The function is given by

σ ( z ) j = e z j ∑ k = 1 K e z k {\displaystyle \sigma (\mathbf {z} )_{j}={\frac {e^{z_{j}}}{\sum _{k=1}^{K}e^{z_{k}}}}} \sigma (\mathbf {z} )_{j}={\frac {e^{z_{j}}}{\sum _{k=1}^{K}e^{z_{k}}}}    for j = 1, …, K.

转载于:https://www.cnblogs.com/DLarTisan/p/6654552.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值