EM算法的应用

一、高斯混合模型参数估计的EM算法
假设观测数据\(y_1, y_2,...,y_N\)由高斯混合模型生成
\[ P(y|\theta) = \sum^k_{k=1} \alpha_k\phi(y|\theta_k)\]
其中, \(\theta = (\alpha_1, \alpha_2,...,\alpha_k:\theta_1, \theta_2, ...,\theta_k), 我们用EM算法算法估计高斯混合模型的参数\)\theta$。

  1. 明确隐变量,写出完全数据的对数似然函数
    概率\(\alpha_k\)选择第\(k\)个高斯分布模型,然后第\(k\)个分模型的概率分布生成观测数据\(y_j\),这时\(y_j\)是已知的, 但反观数据\(y_j\)来自第\(k\)个分模型是未知,以隐变量\(\gamma_{jk}\)表示,其定义如下
    1268600-20171229145647179-2088923258.png

  2. EM算法的E步, 确定Q函数

  3. 确定EM算法的M步
    迭代的M步是求函数\(Q(\theta, \theta^{(i)})\), 即求新一轮迭代的模型参数
    \[\theta^{(i+1)} = argmax Q(\theta, \theta^{(i)}\]
    1268600-20171229152904742-555781211.png

转载于:https://www.cnblogs.com/xz824/p/8144726.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值