EM算法及其应用GMM,pLSA

EM(expectation   Maximization)期望最大是一种迭代算法,是一种对包含隐变量的概率模型,参数估计的极大似然估计法。第一步期望(E):利用当前参数计算对数似然的期望;第二步最大化(M)步,寻找使E步产生的对数似然期望最大化的参数值。迭代使用EM步直到收敛。

提纲挈领:隐变量,极大似然估计

假设训练数据集{x^1,x^2.....x^m}包含m个独立样本,无样本标签,我们希望得到模型p(y|x)。开始下面工作:

1.EM

对于每个样本i,设Qi关于zj的分布,Qi(zj)

\\ L(\theta)=\prod_{i=1}^{m} p(x_i;\theta)\\ l(\theta)=\sum_{i=1}^{m} logp(x_i;\theta)\\ =\sum_{i=1}^{m} log\sum_{j=1}^{k}p(x_i,z_j;\theta)\\ =\sum_{i=1}^{m}log \sum_{j=1}^{k}p(x_i,z_j;\theta)\\ =\sum_{i=1}^{m}log \sum_{j=1}^{k}p(x_i,z_j;\theta)\\ =\sum_{i=1}^{m}log \sum_{j=1}^{k} Q_i(z_j;\theta) \frac{p(x_i,z_j;\theta)}{Q_i(z_j;\theta)}\\ \geq \sum_{i=1}^{m} \sum_{j=1}^{k}Q_i(z_j;\theta) log \frac{p(x_i,z_j;\theta)}{Q_i(z_j;\theta)} \ \ \ \ \ \ (1) 

最后一步采用Jensen不等式,log函数为上凸函数,f(E(x))>=E(f(x)),等式成立条件为f(x)=C,即

\frac{p(x_i,z_j;\theta)}{Q_i(z_j;\theta)}=C\\ \\ s.t \sum Q_i(z_j;\theta)=1\\ \\ p(x_i,z_j;\theta) \propto Q_i(z_j;\theta)

归一化得到:

\\ Q_i(z_j;\theta)=\frac{p(x_i,z_j;\theta)}{\sum_{j=1}^{k} p(x_i,z_j;\theta)}\\ \ \ \ =\frac{p(x_i,z_j;\theta)}{p(x_i;\theta)}\\ =p(z_j|x_i;\theta)

Qi是一个后验概率,由xi和参数可以得到。M步:计算公式1的最大似然函数,得到参数的估计。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值