- 博客(270)
- 收藏
- 关注
原创 torch常用函数手册(10-20)
在给定维度上对输入张量序列seq进行连接操作.torch.cat()可以看做 torch.split() 和 torch.chunk()的反操作。 cat() 函数可以通过下面例子更好的理解参数:在给定维度上将输入张量进行分块儿。参数:沿给定轴dim,将输入的索引张量index,指定位置的值进行聚合。参数沿着指定维度对输入进行切片,取index中指定的相应项数。((index 为一个 LongTensor)然后返回到一个新的张量,返回的张量与原始张量_Tensor**_有相同的维度(在指定轴上)*
2023-07-11 12:47:13 1186
原创 第一章torch(1-10)页
包torch包含了,另外,它也提供了多种工具。其中一些可以有效得对。它有CUDA得对应实现,可以在进行张量运算(计算能力>=2.0)。
2023-07-10 12:41:33 605
原创 Tensor张量介绍
Tensor的中文为张量,张量的意思是一个多维数组,其实的高维扩展。变量可以称为0维张量,向量可以称为1维张量,矩阵可以称为2维张量。RGB图像可以称为3维张量。在这里,可以把张量看作多维数组。
2023-07-09 10:56:40 788
原创 Fast-RCNN
深度卷积网络极大的改善了图片分类和目标检测。目标检测是更具有挑战性的任务,要求更复杂的方法去解决。“proposals: 候选框。
2023-07-08 12:35:14 177
原创 On the Properties of Neural Machine Translation: Encoder–DecoderApproaches
Neural machine translation : 神经机器翻译。神经机器翻译模型经常包含编码器和解码器:an encoder and a decoder.编码器: 从一个变长输入序列中提取固定长度的表示。a fixed-length representation.解码器:从表示中生成一个正确的翻译。generates a correct translation本文使用模型: RNN Encoder–Decoder、 a newly proposed gated recursive convo
2023-07-08 10:48:21 1327
原创 Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
RNNs中不同类型的循环单元。特别关注,实现门机制的复杂的单元。LSTM、GRU。tanh 单元。* RNN是传统前馈神经网络的拓展,传统前馈神经网络能够处理aa recurrent hidden state 循环隐藏状态。RNN更新循环隐藏状态a smooth, bounded function(平滑有界函数)一个生成式RNN的输出是一个序列下一个元素的概率分布。给定当前状态生成时模型可以捕获可变长度的模型分布。只需用一个特别的输出标记一个序列的末尾就可以实现可变长度。
2023-07-07 22:52:30 1266
原创 [CV - Image Classification - 2012]图像分类 AlexNet网络 - 开启深度学习重大事件
明天将Alex网络代码复现以下。最好用原始数据集。
2023-03-18 15:10:19 673
原创 Robust Self-Augmentation for Named Entity Recognition with Meta Reweighting
慢慢的将该方法全部都搞明白,弄彻底,会自己成功的复现论文,死扣都行啦的样子与打算、
2023-02-19 20:54:46 436
原创 论文解读:(TransA)TransA: An Adaptive Approach for Knowledge Graph Embedding
慢慢的采用距离排序损失函数将其给定都行啦的样子与打算,将其深入研究透彻!
2023-02-17 19:57:53 621
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人