[USACO10NOV]购买饲料Buying Feed 单调队列优化DP

题目描述

约翰开车来到镇上,他要带 KKK 吨饲料回家。运送饲料是需要花钱的,如果他的车上有 XXX 吨饲料,每公里就要花费 X2X^2X2 元,开车D公里就需要 D×X2D\times X^2D×X2 元。约翰可以从 NNN 家商店购买饲料,所有商店都在一个坐标轴上,第 iii 家店的位置是 XiX_iXi ,饲料的售价为每吨 CiC_iCi 元,库存为 FiF_iFi

约翰从坐标 X=0X=0X=0 开始沿坐标轴正方向前进,他家在坐标 X=EX=EX=E 上。为了带 KKK 吨饲料回家,约翰最少的花费是多少呢?假设所有商店的库存之和不会少于 KKK 。

举个例子,假设有三家商店,情况如下所示:

坐标X=1X=1X=1X=3X=3X=3X=4X=4X=4E=5E=5E=5
库存111111111
售价111222222

如果 K=2K=2K=2 ,约翰的最优选择是在离家较近的两家商店购买饲料,则花在路上的钱是 1+4=51+4=51+4=5 ,花在商店的钱是 2+2=42+2=42+2=4 ,共需要 999 元。

输入输出格式

输入格式:

111 行:三个整数 K,E,NK,E,NK,E,N 第 2..N+12..N+12..N+1 行:第 i+1i+1i+1 行的三个整数代表, Xi,Fi,CiX_i,F_i,C_iXi,Fi,Ci .

输出格式:

一个整数,代表最小花费

输入输出样例

输入样例#1: 
2 5 3
3 1 2
4 1 2
1 1 1
输出样例#1: 
9

提交地址:Luogu4544

我们发现, 最优的情况肯定是从家里往前走,走到要到达想要到的最远的商店, 往回走的时候再买东西;
这就提示我们, 我们要先对坐标排序, 然后设dp[i][j],表示到了第i个商店, 在第i个商店之前买了j个东西的最小花费;
dp[i][j]=min(dp[i-1][p]+dis[i]*j*j+w[i-1]*(j-p));
什么意思呢?
我们枚举一个p, 表示第i-1个商店时有p个货物,那么显然在i-1个商店买了(j-p)个货物,算上在第i-1个商店的花费,加上从i-1到i的路费,就是dp[i][j];
复杂度nk^2, 妥妥的炸;
考虑优化;
发现转移式子里有min,自觉地想到了单调队列
我们对式子进行一波变形。
dp[i-1][p] - w[i-1]*p + dis[i]*j*j + w[i-1]*j;
我们发现, 在i和j变化的时候,只有p是在变的,所以我们单调队列里放p;
怎么处理呢?
如果(j-q.front() > F[i-1])就pop掉队首, 因为我们要在i-1商店买的货物大于了第i-1个店的库存;
如果o=q.back(), dp[i-1][o]-w[i-1]*o >= dp[i-1][j]-w[i-1]*j, 就pop掉队尾;显然;
(写反了这个↑还能A, 数据太水了)
要注意的是,要把自己的家也当成一个点,这样dp[n][k]才是最后的答案!
然后注意开long long;
Code:
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <algorithm>
 5 #include <queue>
 6 using namespace std;
 7 #define int long long
 8 
 9 inline int read()
10 {
11     int res=0;bool fl=0;char ch=getchar();
12     while(!isdigit(ch)){if(ch=='-')fl=1;ch=getchar();
13     }while(isdigit(ch)){res=(res<<3)+(res<<1)+(ch-'0');ch=getchar();
14     }return fl?-res:res;
15 }
16 
17 int n, k, e;
18 
19 struct date
20 {
21     int pos;
22     int F;
23     int w;
24     friend bool operator <(date a, date b)
25     {
26         return a.pos < b.pos;
27     }
28 }fam[1000010];
29 
30 int dp[510][10010];
31 
32 signed main()
33 {
34     k = read(), e = read(), n = read();
35     
36     for (register int i = 1 ; i <= n ; i ++)
37     {
38         fam[i].pos = read(), fam[i].F = read(), fam[i].w = read();
39     }
40     
41     fam[++n] = (date){e, 0, 0};
42     
43     sort(fam + 1, fam + 1 + n);
44     
45     memset(dp, 0x3f, sizeof dp);
46     
47     dp[0][0] = 0;
48     
49     for (register int i = 1 ; i <= n ; i ++)
50     {
51         deque <int> q; 
52         for (register int j = 0 ; j <= k ; j ++) 
53         {            
54             while (!q.empty() and j - q.front() > fam[i-1].F) q.pop_front(); //要买的大于上一个店的存储 
55             if (dp[i-1][j] != 0x3f3f3f3f)
56             {
57                 while (!q.empty() and dp[i-1][q.back()] - fam[i-1].w * q.back() >= dp[i-1][j] - fam[i-1].w * j) q.pop_back();
58                 q.push_back(j);
59             }
60             int o = q.front();
61             if (!q.empty()) dp[i][j] = dp[i-1][o] - fam[i-1].w * o + (fam[i].pos - fam[i-1].pos) * j * j + fam[i-1].w * j;
62         }
63     }
64     
65     cout << dp[n][k] << endl;
66     return 0;
67     
68 }
 
    

 

 

转载于:https://www.cnblogs.com/BriMon/p/9129917.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值