题解 [USACO10NOV]Buying Feed G

12 篇文章 0 订阅
11 篇文章 0 订阅

看完这到题,很容易想到用背包做,即设状态 f i , j f_{i,j} fi,j表示前 i i i个商店一共带了 j j j吨货的最小花费,只需要先把商店的位置排个序,就可以直接枚举了,那么就可以得到状态转移方程

{ f i , j = f i − 1 , j + j ∗ j ∗ ( X i − X i − 1 ) , u = 0 f i , j = m i n 0 ≤ j ≤ k , 1 ≤ u ≤ F i ( f i , j − u + u ∗ C i ) \begin{cases} f_{i,j}=f_{i-1,j}+j*j*(X_i-X_{i-1}),u=0\\ f_{i,j}= \underset{0\le j\le k,1\le u\le F_i}{min}(f_{i,j-u}+u*C_i) \end{cases} fi,j=fi1,j+jj(XiXi1),u=0fi,j=0jk,1uFimin(fi,ju+uCi)

第一层循环枚举当前走到第 i i i商店,第二层循环枚举当前一共运了 j j j吨货物,第三层循环枚举在当前商店购买 u 吨 货 物 u吨货物 u,那么我们就可以 O ( n 3 ) O(n^3) O(n3)实现这个算法,很明显是会超时的,所以想办法优化,(通过查看标签),很明显可以看到, f i , j f_{i,j} fi,j只跟之前的 f i , j − u f_{i,j-u} fi,ju有关,同时每个 u u u需满足 u + F i > = j u+F_i>=j u+Fi>=j,所以可以考虑单调队列来优化,那么时间复杂度就会将为 O ( n 2 ) O(n^2) O(n2),具体细节看代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;

ll dp[505][10005], q[10005], temp[10005];//数据范围最大会爆int,所以要开long long
int front, tail;//队头,队尾
struct sta
{
    int x, f, c;
    bool operator < (const sta a) const 
    {
        return x < a.x;
    }
} shop[505];//存的每一个商店

int main()
{
    int k, e, n;
    scanf("%d%d%d", &k, &e, &n);
    for (int i = 1; i <= n; i++)
        scanf("%d%d%d", &shop[i].x, &shop[i].f, &shop[i].c);
    sort(shop + 1, shop + 1 + n);//按坐标位置排序
    memset(dp, 0x3f, sizeof(dp));
    dp[0][0] = 0;//初始状态
    for (int i = 1; i <= n; i++)
    {
        front = 0, tail = -1;
        for (int j = 0; j <= k; j++)
            temp[j] = dp[i][j] = dp[i - 1][j] + j * j * (shop[i].x - shop[i - 1].x);//注意到这里为什么需要重新开个数组,因为每次的$dp_{i,j}$是由之前更新来的,所以如果这次更新了就会影响后面的状态,所以就需要重新开个数组存一下,避免重复更新
        for (int j = 0; j <= k; j++)
        {
            if (front <= tail && q[front] + shop[i].f < j)
                front++;
            while(front <= tail && temp[q[tail]] - q[tail] * shop[i].c > temp[j] - j * shop[i].c)
                tail--;
            q[++tail] = j;
            if (front <= tail)
                dp[i][j] = min(dp[i][j], temp[q[front]] + (j - q[front]) * shop[i].c);
        }//单调队列优化
    }
    printf("%lld", dp[n][k] + k * k * (e - shop[n].x));
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值