看完这到题,很容易想到用背包做,即设状态 f i , j f_{i,j} fi,j表示前 i i i个商店一共带了 j j j吨货的最小花费,只需要先把商店的位置排个序,就可以直接枚举了,那么就可以得到状态转移方程
{ f i , j = f i − 1 , j + j ∗ j ∗ ( X i − X i − 1 ) , u = 0 f i , j = m i n 0 ≤ j ≤ k , 1 ≤ u ≤ F i ( f i , j − u + u ∗ C i ) \begin{cases} f_{i,j}=f_{i-1,j}+j*j*(X_i-X_{i-1}),u=0\\ f_{i,j}= \underset{0\le j\le k,1\le u\le F_i}{min}(f_{i,j-u}+u*C_i) \end{cases} ⎩⎨⎧fi,j=fi−1,j+j∗j∗(Xi−Xi−1),u=0fi,j=0≤j≤k,1≤u≤Fimin(fi,j−u+u∗Ci)
第一层循环枚举当前走到第
i
i
i商店,第二层循环枚举当前一共运了
j
j
j吨货物,第三层循环枚举在当前商店购买
u
吨
货
物
u吨货物
u吨货物,那么我们就可以
O
(
n
3
)
O(n^3)
O(n3)实现这个算法,很明显是会超时的,所以想办法优化,(通过查看标签),很明显可以看到,
f
i
,
j
f_{i,j}
fi,j只跟之前的
f
i
,
j
−
u
f_{i,j-u}
fi,j−u有关,同时每个
u
u
u需满足
u
+
F
i
>
=
j
u+F_i>=j
u+Fi>=j,所以可以考虑单调队列来优化,那么时间复杂度就会将为
O
(
n
2
)
O(n^2)
O(n2),具体细节看代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
ll dp[505][10005], q[10005], temp[10005];//数据范围最大会爆int,所以要开long long
int front, tail;//队头,队尾
struct sta
{
int x, f, c;
bool operator < (const sta a) const
{
return x < a.x;
}
} shop[505];//存的每一个商店
int main()
{
int k, e, n;
scanf("%d%d%d", &k, &e, &n);
for (int i = 1; i <= n; i++)
scanf("%d%d%d", &shop[i].x, &shop[i].f, &shop[i].c);
sort(shop + 1, shop + 1 + n);//按坐标位置排序
memset(dp, 0x3f, sizeof(dp));
dp[0][0] = 0;//初始状态
for (int i = 1; i <= n; i++)
{
front = 0, tail = -1;
for (int j = 0; j <= k; j++)
temp[j] = dp[i][j] = dp[i - 1][j] + j * j * (shop[i].x - shop[i - 1].x);//注意到这里为什么需要重新开个数组,因为每次的$dp_{i,j}$是由之前更新来的,所以如果这次更新了就会影响后面的状态,所以就需要重新开个数组存一下,避免重复更新
for (int j = 0; j <= k; j++)
{
if (front <= tail && q[front] + shop[i].f < j)
front++;
while(front <= tail && temp[q[tail]] - q[tail] * shop[i].c > temp[j] - j * shop[i].c)
tail--;
q[++tail] = j;
if (front <= tail)
dp[i][j] = min(dp[i][j], temp[q[front]] + (j - q[front]) * shop[i].c);
}//单调队列优化
}
printf("%lld", dp[n][k] + k * k * (e - shop[n].x));
return 0;
}