使用GAN生成图片

一:卷积神经网络的搭建

class NetG(nn.Module):
    '''
    生成器定义
    '''

    def __init__(self, opt):
        super(NetG, self).__init__()
        ngf = opt.ngf  # 生成器feature map数

        self.maina = nn.Sequential(
            # 输入是一个nz维度的噪声,我们可以认为它是一个1*1*nz的feature map
            nn.ConvTranspose2d(opt.nz, ngf * 16, 4, 1, 0, bias=False),
            #noises = t.randn(opt.gen_search_num, opt.nz, 1, 1).normal_(opt.gen_mean, opt.gen_std)
            nn.BatchNorm2d(ngf * 16),
            nn.ReLU(True),

            # 上一步的输出形状:(ngf*8) x 4 x 4
            #
            nn.ConvTranspose2d(ngf * 16, ngf * 10, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 10),
            nn.ReLU(True),
            # # # 上一步的输出形状: (ngf*4) x 8 x 8
            # # #
            nn.ConvTranspose2d(ngf * 10, ngf * 8, 4, 3, 1, bias=False),
            nn.BatchNorm2d(ngf * 8),
            nn.ReLU(True),
            # # # 上一步的输出形状: (ngf*2) x 16 x 16
            # #
            nn.ConvTranspose2d(ngf * 8, ngf*8, 4, 3, 1, bias=False),
            nn.BatchNorm2d(ngf*8),
            nn.ReLU(True),
            # # # 上一步的输出形状:(ngf) x 32 x 32
            nn.ConvTranspose2d(ngf * 8, ngf * 6, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 6),
            nn.ReLU(True),
            # #
            nn.ConvTranspose2d(ngf * 6, ngf , 4, 1, 1, bias=False),
            nn.BatchNorm2d(ngf ),
            nn.ReLU(True),
            nn.ConvTranspose2d(ngf, 3, 5, 3, 1, bias=False),
            nn.Tanh()  # 输出范围 -1~1 故而采用Tanh
            # 输出形状:3 x 96 x 96
        )

    def forward(self, input):
        return self.maina(input)

  

class NetD(nn.Module):
    '''
    判别器定义
    '''

    def __init__(self, opt):
        super(NetD, self).__init__()
        ndf = opt.ndf
        self.main = nn.Sequential(
            # 输入 3 x 96 x 96
            nn.Conv2d(3, ndf, 5, 3, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            # 输出 (ndf) x 32 x 32

            nn.Conv2d(ndf, ndf * 6, 4, 1, 1, bias=False),
            nn.BatchNorm2d(ndf * 6),
            nn.LeakyReLU(0.2, inplace=True),
            # 输出 (ndf*2) x 16 x 16
            #
            nn.Conv2d(ndf * 6, ndf * 8, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 8),
            nn.LeakyReLU(0.2, inplace=True),
            # # 输出 (ndf*4) x 8 x 8
            #
            nn.Conv2d(ndf * 8, ndf * 8, 4, 3, 1, bias=False),
            nn.BatchNorm2d(ndf * 8),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(ndf * 8, ndf * 10, 4, 3, 1, bias=False),
            nn.BatchNorm2d(ndf * 10),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(ndf * 10, ndf * 16, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 16),
            nn.LeakyReLU(0.2, inplace=True),
            # 输出 (ndf*8) x 4 x 4
            #
            nn.Conv2d(ndf * 16, 1, 4, 1, 0, bias=False),
            nn.Sigmoid()  # 输出一个数(概率)
        )

    def forward(self, input):
        return self.main(input).view(-1)

  训练后生成的图片

 

 

 

 

转载于:https://www.cnblogs.com/dudu1992/p/9110287.html

### 使用 GAN 生成图片 GAN生成对抗网络)由两部分组成:生成器和判别器。生成器尝试创建逼真的图像,而判别器则评估这些图像是真实的还是伪造的。通过不断迭代优化这两个组件之间的竞争过程,最终可以得到高质量的人造图像。 为了实现这一目标,在 TensorFlow 中构建了一个简单的 GAN 来处理 MNIST 手写数字数据集[^1]: #### 准备工作环境 首先安装必要的 Python 库并导入所需模块: ```python import tensorflow as tf from tensorflow.keras import layers, models import numpy as np import matplotlib.pyplot as plt ``` #### 加载与预处理数据 接着加载MNIST手写字体数据,并对其进行标准化操作以便于后续计算: ```python (train_images, _), (_, _) = tf.keras.datasets.mnist.load_data() train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32') train_images = (train_images - 127.5) / 127.5 # Normalize the images to [-1, 1] BUFFER_SIZE = 60000 BATCH_SIZE = 256 train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE) ``` #### 构建生成器模型 定义一个用于生成假样本的神经网络结构——即所谓的“生成器”。这里采用全连接层加反卷积的方式逐步放大特征维度直至恢复成原始大小。 ```python def make_generator_model(): model = tf.keras.Sequential() model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,))) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Reshape((7, 7, 256))) model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False)) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False)) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh')) return model ``` #### 定义判别器架构 同样地建立另一个负责区分真假样本的分类器——也就是常说的“判别器”,它接收一张输入图片并通过多层感知机判断其真实性概率值。 ```python def make_discriminator_model(): model = tf.keras.Sequential() model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28, 1])) model.add(layers.LeakyReLU()) model.add(layers.Dropout(0.3)) model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same')) model.add(layers.LeakyReLU()) model.add(layers.Dropout(0.3)) model.add(layers.Flatten()) model.add(layers.Dense(1)) return model ``` #### 设置损失函数及优化算法 对于二元交叉熵来说,当标签为真时取正值;反之亦然。因此可以根据此原则分别指定两个不同版本给定相应参数下的loss function形式化表达式。 ```python cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True) def discriminator_loss(real_output, fake_output): real_loss = cross_entropy(tf.ones_like(real_output), real_output) fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output) total_loss = real_loss + fake_loss return total_loss def generator_loss(fake_output): return cross_entropy(tf.ones_like(fake_output), fake_output) generator_optimizer = tf.keras.optimizers.Adam(1e-4) discriminator_optimizer = tf.keras.optimizers.Adam(1e-4) ``` #### 训练循环逻辑控制流程 最后编写一段完整的训练脚本来交替更新上述提到过的两种子网权重直到满足收敛条件为止。 ```python EPOCHS = 50 noise_dim = 100 num_examples_to_generate = 16 seed = tf.random.normal([num_examples_to_generate, noise_dim]) @tf.function def train_step(images): noise = tf.random.normal([BATCH_SIZE, noise_dim]) with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: generated_images = generator(noise, training=True) real_output = discriminator(images, training=True) fake_output = discriminator(generated_images, training=True) gen_loss = generator_loss(fake_output) disc_loss = discriminator_loss(real_output, fake_output) gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables) generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables)) discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables)) for epoch in range(EPOCHS): for image_batch in train_dataset: train_step(image_batch) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值