这里必须标记一下那个傻逼问题,再不解决我人就没了!
先放一个 $T3$ $20$ 分暴力
1 #include<bits/stdc++.h> 2 #define rep(i,x,y) for(int i=(x);i<=(y);++i) 3 #define dwn(i,x,y) for(int i=(x);i>=(y);--i) 4 #define rep_e(i,u) for(int i=hd[u];i;i=e[i].nxt) 5 #define lc tr[o].l 6 #define rc tr[o].r 7 #define N 100003 8 #define inf 2147483647 9 using namespace std; 10 inline int read(){ 11 int x=0; bool f=1; char c=getchar(); 12 for(;!isdigit(c);c=getchar()) if(c=='-') f=0; 13 for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0'); 14 if(f) return x; 15 return 0-x; 16 } 17 18 int T1_ROOT=1; 19 int n,m,L1,R1,L2,R2,W,ans; 20 21 struct edge{int u,v,w;}e[2002*2002]; 22 int cnt; 23 inline bool cmp(edge a,edge b){return a.w<b.w;} 24 25 struct Tree{int l,r,v;}tr[N*150]; 26 int rt[N<<1],tot[3]; 27 inline int newNode(int x){return ++tot[x];} 28 inline void pushdown(int o){ 29 if(tr[o].v){ 30 tr[lc].v+=tr[o].v, tr[rc].v+=tr[o].v; 31 tr[o].v=0; 32 } 33 } 34 void add2(int &o,int l,int r){ 35 if(!o) o=newNode(2); 36 if(L2<=l && r<=R2){tr[o].v+=W; return;} 37 pushdown(o); 38 int mid=(l+r)>>1; 39 if(L2<=mid) add2(lc,l,mid); 40 if(R2>mid) add2(rc,mid+1,r); 41 } 42 void add1(int &o,int l,int r){ 43 if(!o) o=newNode(1); 44 //printf("%d %d %d %d %d\n",o,l,r,L1,R1); 45 //system("pause"); 46 if(L1<=l && r<=R1){add2(rt[o],1,n); return;} 47 int mid=(l+r)>>1; 48 if(L1<=mid) add1(lc,l,mid); 49 if(R1>mid) add1(rc,mid+1,r); 50 } 51 int X,mat[2002][2002]; 52 void dfs2(int o,int l,int r){ 53 if(!o) return; 54 if(l==r){mat[X][l]+=tr[o].v; return;} 55 pushdown(o); 56 int mid=(l+r)>>1; 57 dfs2(lc,l,mid); 58 dfs2(rc,mid+1,r); 59 } 60 void dfs1(int o,int l,int r){ 61 if(!o) return; 62 rep(i,l,r) X=i, dfs2(rt[o],1,n); 63 if(l==r) return; 64 int mid=(l+r)>>1; 65 dfs1(lc,l,mid); 66 dfs1(rc,mid+1,r); 67 } 68 /* 69 struct SegTree{ 70 struct TREE{int l,r,v;}tr[N*90]; 71 int L,R,W,e[2001][2001]; 72 73 inline void pushdown(int o){ 74 if(tr[o].v){ 75 tr[lc].v+=tr[o].v, tr[rc].v+=tr[o].v; 76 tr[o].v=0; 77 } 78 } 79 void add(int &o,int l,int r){ 80 if(!o) o=newNode(1); 81 if(L1<=l && r<=R1){tr[o].v+=W; return;} 82 pushdown(o); 83 int mid=(l+r)>>1; 84 if(L1<=mid) add1(lc,l,mid); 85 if(R1>mid) add1(rc,mid+1,r); 86 } 87 inline void add(int ver,int l,int r,int w){ 88 L=l, R=r, W=w; add(rt[ver],1,n); 89 } 90 } 91 */ 92 int fa[N]; 93 int find(int x){return x==fa[x] ? x : fa[x]=find(fa[x]);} 94 namespace pts20{ 95 void solve(){ 96 rep(i,1,m) 97 L1=read(), R1=read(), L2=read(), R2=read(), W=read(), add1(T1_ROOT,1,n); 98 dfs1(1,1,n); 99 rep(i,1,n) 100 rep(j,i+1,n) 101 e[cnt++]=(edge){i,j,mat[i][j]}; 102 sort(e,e+cnt,cmp); 103 rep(i,1,n) fa[i]=i; 104 int e_cnt; 105 for(int i=0;i<cnt;++i){ 106 int fu=find(e[i].u), fv=find(e[i].v); 107 //printf("zuixiao:%d %d %d\n",e[i].u,e[i].v,e[i].w); 108 if(fu==fv) continue; 109 fa[fv]=fu; 110 ans+=e[i].w; 111 ++e_cnt; 112 //printf("%d %d %d %d\n",e_cnt,n-1,i,cnt); 113 if(e_cnt>=n-1) break; 114 } 115 printf("%d\n",ans); 116 } 117 } 118 using namespace pts20; 119 /* 120 int mn_o,mn_v; 121 void queryMin(int o,int l,int r){ 122 if(!o) return; 123 if(l==r){mn_o=o, mn_v=tr[o].mn; return;} 124 int mid=(l+r)>>1; 125 if(tr[lc].mn<=tr[rc].mn) queryMin(lc,l,mid); 126 else queryMin(rc,mid+1,r); 127 } 128 int blo; 129 */ 130 int main(){ 131 //freopen("C.in","r",stdin); 132 //freopen("C.out","w",stdout); 133 n=read(), m=read(); 134 tot[1]=1, tot[2]=n<<1; 135 if(n<=2000) pts20::solve(); 136 return 0; 137 } 138 /* 139 5 4 140 1 2 3 4 10 141 1 1 2 2 -20 142 3 3 4 4 -5 143 2 2 5 5 -15 144 */
写了个树套树连边,标准输入输出随便过样例,真爽。
然而加了个文件读写,测样例就输出 $-20$ 了。
我都忘了这种问题是什么情况了,考后重新输出中间结果查了一遍,发现真是石乐志。
注意第 $104$ 行,局部变量没有赋初值。没文件读写就默认把初值弄成 $0$,有文件读写就给了个随机初值。
这个问题其实大多数人都会犯,但我是真的想不起来这种错误了,先立个 $flag$,下次再出这种问题查不出来的话我得吃点什么。
T1
30pts
没想
50pts
我们把区间看成竖直的,第 $i$ 个区间代替成平面直角坐标系中 从 $(i,L_i)$ 到 $(i,R_i)$ 的线段。问题就成了有多少种直线能穿过所有 $n$ 条线段。
考虑暴力求斜率的上下界,然后枚举斜率,再扫一遍 $n$ 条线段,把每条直线的上下端点按斜率映射到 $y$ 轴上,最后这种斜率的直线穿过所有 $n$ 条线段的方案数 上端点映射在 $y$ 轴上的最小值 $-$ 就是下端点映射在 $y$ 轴上的最大值(这里注意特判一下,如果前者小于后者,方案数应该为 $0$)。
由斜率上下界的计算方法(见代码)可知,时间复杂度大概是 $O(线段长度 / n\times n) = O(线段长度)$。
100pts
(下标从 $0$ 开始算)
对于一条直线,我们用一个二元组 $(a,d)$ 表示,它的意义是直线与 $x=0$ 的交点的纵坐标为 $a$,直线的斜率为 $d$ 。
那对于每条直线,若其满足条件,则要满足该约束:$a∈[-id+L_i,\space -id+R_i]$
也就是 $-id+L_i\le a\le -id+R_i$
它的解的数量是一个以 $d$ 为横坐标,以 $a$ 为纵坐标的二维平面中两条直线所夹的范围内的整点数。
然后总共有 $n$ 个约束,那么就有 $2\times n$ 条直线。
解的总数就是被所有对直线夹起来的那一部分 二维平面的整点数,从图上看,它就是最里面的那一块。
半平面交?差不多就是求这种东西。
画图举例。同色线条代表一组约束,那么半平面交的部分就是中间的灰色区域。我们要求那部分面积。
求半平面交应该并不好写,但这题有个特殊性质,就是直线是一对一对地放到平面上的,我们只要分别对所有上界直线和下界直线求凸包就可以了。
补充知识:维护凸包
以上凸包为例,把所有边按斜率 $k$ 从大到小排序,用一个单调队列维护当前认为的凸包边界。比如已经往单调队列中插入 $3$ 条边的情况如下(灰色区域为凸包内部):
插入第 $4$ 条直线(红线)时,判断单调队列最右端的两条直线的交点 与单调队列最右端一条直线与新插入的直线的交点 的横坐标,如果后者小于前者,就删掉单调队列最右端一条直线,并继续尝试往前删;否则将新插入的直线放在单调队列最右端。
结合画图可理解,因为后者小于前者时,新插入的直线与当前凸包最右边的直线的交点在凸包外,故新插入的之前在凸包范围内 会与当前凸包更靠左的直线相交(显然这样会缩小凸包),当前凸包最右边的直线就被排除到凸包外了,故删除。
下凸包同理。
求完上界的上凸包和下界的下凸包后,仔细思考一下,发现多边形无法直接计算面积,所以我们把凸包拆成若干个三角形和四边形,显然这两种图形都能计算面积。具体实现:用扫描线按横坐标从小到大扫凸包,每遇到凸包的一个拐点(不管拐点在上界还是下界),都计算一下凸包这一部分的三角形/梯形面积(具体地说就是计算点数)。
1 #include<bits/stdc++.h> 2 #define rep(i,x,y) for(int i=(x);i<=(y);++i) 3 #define dwn(i,x,y) for(int i=(x);i>=(y);--i) 4 #define rep_e(i,u) for(int i=hd[u];i;i=e[i].nxt) 5 #define ll long long 6 #define M 200020 7 #define inf 100000010 8 #define maxL -inf 9 #define maxR inf 10 using namespace std; 11 inline int read(){ 12 int x=0; bool f=1; char c=getchar(); 13 for(;!isdigit(c);c=getchar()) if(c=='-') f=0; 14 for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0'); 15 if(f) return x; 16 return 0-x; 17 } 18 int n,m,m1,m2; 19 ll X[(M<<1)+10],c[2][M],ans; 20 struct line{ 21 ll k,b; 22 line(){} 23 line(ll _k,ll _b){k=_k,b=_b;} 24 ll get(ll x){return k*x+b;} 25 }mx[M],mn[M],s[2][M]; 26 inline ll con(line &A,line &B){return (ll)ceil((double)(A.b-B.b)/(double)(B.k-A.k));} 27 int build(line *x,line *S,ll *C){ 28 int top=1; S[1]=x[1]; 29 rep(i,2,n){ 30 while(top>1 && con(S[top],S[top-1])>=con(S[top],x[i])) --top; 31 S[++top]=x[i]; 32 } 33 rep(i,1,top) 34 C[i]=i>1?con(S[i],S[i-1]):maxL, X[++m]=C[i]; 35 return top; 36 } 37 ll calc(line up,line dn,int l,int r){ 38 ll len=r-l; 39 if(up.get(l)>=dn.get(l) && up.get(r)>=dn.get(r)) 40 return (up.get(l)-dn.get(l)+1)*(len+1)+(len*(len+1)>>1)*(up.k-dn.k); 41 if(up.get(l)==dn.get(l) || up.get(r)==dn.get(r)) return 1ll; //构造出的任意两条直线的交点必定是个整点,所以反三角的顶点处必定是个整点 42 if(up.get(l)<dn.get(l) & up.get(r)<dn.get(r)) return 0ll; 43 ll pos=con(up,dn); return calc(up,dn,l,pos-1)+calc(up,dn,pos,r); 44 } 45 void solve(){ 46 sort(X+1,X+m+1); 47 for(int i=2,t1=1,t2=1; i<=m; ++i) if(X[i]>X[i-1]){ 48 while(t1<m1 && c[0][t1+1]<=X[i-1]) t1++; 49 while(t2<m2 && c[1][t2+1]<=X[i-1]) t2++; 50 ans+=calc(s[0][t1],s[1][t2],X[i-1],X[i]-1); 51 } 52 } 53 int main(){ 54 n=read(), X[1]=-maxL, X[m=2]=maxR; 55 int dn,up; 56 rep(i,0,n-1){ 57 dn=read(), up=read(); 58 mx[i+1]=line(-i,up), mn[i+1]=line(-i,dn); 59 } 60 reverse(mn+1,mn+n+1); 61 m1=build(mx,s[0],c[0]); 62 m2=build(mn,s[1],c[1]); 63 solve(), printf("%lld\n",ans); 64 return 0; 65 }
T2
10pts
打表
100pts
这题题面出锅了,$pdf$ 开头说了下文题面不会有废话,但这题第二句实际上不但是废话还透露了题解……(虽然并不能看出来那是题解)
首先,期望 $=$ 概率 $\times$ 贡献,一个点最终的期望值,是由其它每个点由某个概率给来 $1$ 贡献得到的(也就是标记一个点时,标记点与这个点在同一连通块时才对这个点造成 $1$ 贡献,否则没有)。所以可以反过来考虑每一个点给其它点贡献的期望值,也就是造成贡献的概率。
对于一对点 $x,y$,当我们标记点 $x$ 时,只有连接两点的简单路径上没有点被标记的情况下(也就是两点在同一连通块),点 $x$ 才会对点 $y$ 造成 $1$ 贡献(同一连通块所有点点权 $+1$)。
既然连接两点的简单路径上所有点都没被标记过,那么点 $x$ 对点 $y$ 造成 $1$ 贡献的概率是 $\frac{1}{dis(x,y)+1}$。
因为在这条简单路径上的 $dis(x,y)+1$ 个点中,必须先选点 $x$ 才能对点 $y$ 造成 $1$ 贡献,若先选路径上其它一点,点 $x,y$ 就不在一个连通块,之后点 $x$ 就没法对点 $y$ 造成贡献了。
注意:$x$ 可以等于 $y$,因为标记一个点本身就会对自己造成 $1$ 贡献。
对于每一对点 $x,y$ 都是这样,所以题目要求的答案就是 $$\sum_{i=1}^{n}\sum_{j=1}^{n}\frac{1}{dis(i,j)+1}$$
也就是我们只需要统计对于 $i∈[1,n]$,求距离为 $i$ 的点对数。
一说到统计树上所有的简单路径,自然有点分治。
对于一个分治中心的两棵子树,开一个数组 $cnt$ 记录已经遍历过的子树中的点,以到重心的距离为下标,即 $cnt_i$ 表示已经遍历过的所有点中,到重心距离为 $i$ 的点数。
由于路径长度的合并性质,到重心距离分别为 $i$ 和 $j$ 的两个不同子树中的点的距离为 $i+j$,换在数组上就是 $cnt$ 数组的第 $i$ 位和第 $j$ 位的乘积存在 $ans$ 数组的第 $i+j$ 位上($ans_i$ 表示在当前遍历过的点集中,简单路径经过当前分治中心 且距离为 $i$ 的点对的数量 ),所以用 $NTT$ 合并数组即可。
复杂度 $O(n\times log^2(n))$(点分治共 $log$ 层,每层点数总和是 $n$ 级别的,合并这些点的复杂度是 $O(n\times log(n))$)。由于 $NTT$ 的大常数,开 $3$ 秒好像很有道理。
有点恶心的题……
1 #include<bits/stdc++.h> 2 #define rep(i,x,y) for(int i=(x);i<=(y);++i) 3 #define dwn(i,x,y) for(int i=(x);i>=(y);--i) 4 #define rep_e(i,u) for(int i=hd[u];i;i=e[i].nxt) 5 #define ll long long 6 #define N 100003 7 #define mod 998244353 8 #define G 3 9 using namespace std; 10 inline int read(){ 11 int x=0; bool f=1; char c=getchar(); 12 for(;!isdigit(c);c=getchar()) if(c=='-') f=0; 13 for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0'); 14 if(f) return x; 15 return 0-x; 16 } 17 int n,inv[N]; 18 struct edge{int v,nxt;}e[N<<1]; 19 int hd[N],cnt; 20 inline void add(int u,int v){e[++cnt]=(edge){v,hd[u]}, hd[u]=cnt;} 21 int siz[N],Siz,mn,root; bool vis[N]; 22 void getRoot(int u,int fa){ 23 siz[u]=1; int mxson=0; 24 rep_e(i,u) if(!vis[e[i].v] && e[i].v!=fa){ 25 getRoot(e[i].v,u); 26 siz[u]+=siz[e[i].v]; 27 mxson=max(mxson,siz[e[i].v]); 28 } 29 mxson=max(mxson,Siz-siz[u]); 30 if(mxson<mn) mn=mxson, root=u; 31 } 32 int f[N],mxdis; 33 void dfs(int u,int fa,int dis){ 34 f[dis]++, mxdis=max(mxdis,dis); 35 rep_e(i,u) if(!vis[e[i].v] && e[i].v!=fa) dfs(e[i].v,u,dis+1); 36 } 37 int r[N<<2]; 38 int getlr(int len){ 39 int tmp=1,_len=0; for(; tmp<=len; ++_len,tmp<<=1); len=_len; //之前程序跑得巨慢是因为多项式长度求错了,这行的tmp<=len写成了tmp<=cnt...... 40 rep(i,0,tmp-1) r[i]=(r[i>>1]>>1)|((i&1)<<(len-1)); 41 return tmp; 42 } 43 int Pow(ll x,int y){ 44 ll res=1; 45 while(y) {if(y&1) res=res*x%mod; x=x*x%mod; y>>=1;} 46 return res; 47 } 48 void ntt(int *c,int lim,int tag){ 49 int i,j,k; 50 for(i=0;i^lim;++i) if(i<r[i]) swap(c[i],c[r[i]]); 51 for(i=1;i<lim;i<<=1){ 52 int wn = Pow(tag==1?G:inv[G], (mod-1)/(i<<1)); 53 for(j=0;j<lim;j+=(i<<1)){ 54 int w=1, x, y; 55 for(k=0; k^i; ++k,w=(ll)w*wn%mod) 56 x=c[j+k], y=(ll)w*c[j+i+k]%mod, c[j+k]=(x+y)%mod, c[j+i+k]=(x-y+mod)%mod; 57 } 58 } 59 if(tag==-1){ 60 int invn=Pow(lim,mod-2); 61 rep(i,0,lim-1) c[i]=(ll)c[i]*invn%mod; 62 } 63 } 64 65 int A[N<<2]; 66 void mul(int len){ 67 int lim=getlr(len<<1); 68 rep(i,0,len) A[i]=f[i]; rep(i,len+1,lim-1) A[i]=0; 69 ntt(A,lim,1); 70 rep(i,0,lim-1) A[i]=(ll)A[i]*A[i]%mod; 71 ntt(A,lim,-1); 72 return; 73 } 74 int sum[N]; 75 void getAns(int u,int val,int dep){ 76 mxdis=0, dfs(u,u,dep), mul(mxdis); 77 rep(i,0,mxdis<<1) sum[i+1]=(sum[i+1]+(ll)A[i]*val)%mod; 78 rep(i,0,mxdis) f[i]=0; 79 return; 80 } 81 void calc(int u){//inclusion-exclusion 82 getAns(u,1,0); 83 rep_e(i,u) if(!vis[e[i].v]) getAns(e[i].v,-1,1); 84 } 85 void solve(int u,int s){ 86 if(s==1){sum[1]=(sum[1]+1)%mod; vis[u]=1; return;} 87 Siz=s, mn=2147483647, getRoot(u,u); 88 vis[u=root]=1, calc(u); 89 rep_e(i,u) if(!vis[e[i].v]){ 90 solve(e[i].v, siz[e[i].v]>siz[u]?s-siz[u]:siz[e[i].v]); 91 } 92 } 93 int ans; 94 int main(){ 95 n=read(); 96 int u,v; 97 rep(i,2,n) u=read(), v=read(), add(u,v), add(v,u); 98 inv[1]=1; rep(i,2,n) inv[i]=(ll)(mod-mod/i)*inv[mod%i]%mod; 99 solve(1,n); 100 rep(i,1,n) ans=(ans+(ll)inv[i]*sum[i]%mod)%mod; 101 printf("%d\n",ans); 102 return 0; 103 }
T3
常规连边是不可能的,我们回去考虑朴素做法。
发现题目的加法操作就是在邻接矩阵的两个矩形区域集体加一个数。
可以用扫描线加线段树维护这个。
但是怎么合并连通块?
有一种冷门的最小生成树算法(王爷以前提过)叫 $boruvka$算法。
做法是对于当前每个连通块,找到这块与其它块的连边中权值最小的那条,把它连上。
这样做一轮,连通块数量至少减少一半,所以只需要做 $log(n)$ 轮。
由于正常情况下这个算法的复杂度也是 $O(n\times log(n))$ 的,没 $kruskal$ 算法直观,所以几乎不用。
但在这题里用这种做法来连边效果会很好。
我们把每个矩形拆成 $2$ 个扫描线上的操作。
线段树上每个节点维护 $2$ 个 $pair$,记录连向两个不同连通块的边所指向的连通块和这条边的边权,在指向不同连通块的基础上再使边权最小。
线段树 $pushup$ 时讨论一下即可转移。
最后 $2$ 条边中至少有一条指向与当前点不在同一连通块的点,连上这条边即可。
我讲个道理,没有文字题解真的不是什么好事情,因为文字可以解释代码,而代码未必能很好地解释文字。做过一道题,过了若干个月就忘了怎么做的事情已经发生很多次了,相信我不用列举的。