原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ450.html
题解
首先有一个东西叫做“单位根反演”,它在 FFT 的时候用到过:
$$\frac 1 n \sum_{i=0}^{n-1} \omega_n ^{d\cdot i} = [d|n]$$
其中 $\omega_n$ 表示 $n$ 次单位根。
接下来我们回到本题。
我们来搞一个指数生成函数,第 i 项表示总共复读 i 次,使得一个复读机开心的方案。
$$f(x) = \sum_{i\geq 0} [d|i] \frac{x^i} {i!}$$
那么我们要求的东西就是:
$$f^k(x)[n]$$
我们来给 $f(x)$ 推一推式子:
$$f(x) = \sum_{i\geq 0} [d|i] \frac{x^i} {i!} \\ = \sum_{i\geq 0} \left( \frac 1 d \sum_{j=0}^{d-1} \omega_d^{ij} \right) \frac{x^i}{i!}\\ = \frac 1 d \sum_{j=0}^{d-1} \sum_{i\geq 0} \frac{x^i (\omega _d ^j)^i}{i!}\\ = \frac 1 d \sum_{i=0}^{d-1} e^{\omega_d ^i x}$$
在 NTT 的时候,我们用原根的幂来代替单位根。
我们发现 19491001 是个质数,它的最小原根是 7 ,而且 19491000 = 2*2*2*3*5*5*5*73*89,含有因子 2 和 3,这说明能找到原根来分别代替 $\omega _2$ 和 $\omega_3$ 。
接下来我们分情况讨论:
d = 1 : ans = $k^n$ 。
d = 2 :
$$f(x) = \frac 12 (e^x + e^{-x})$$
$$f^k(x)[n] = (\frac 1 2 )^k\sum_{i=0}^{k} \binom k i c^n $$
由于 $k\leq 500000$,直接爆算就好了。
d = 3 :
$$f(x) = \frac 13 (e^x + e^{\omega_3 x } + e^{\omega_3^2 x })$$
注意到由于 d = 3 时, $k\leq 1000$ ,所以和 $d = 2 $ 的情况差不多,暴力展开 2 层就好了。
具体怎么做直接看代码吧。懒得码式子了。
时间复杂度 $O(k^{d-1})$ 。
代码
#pragma GCC optimize("Ofast","inline")
#include <bits/stdc++.h>
#define clr(x) memset(x,0,sizeof (x))
#define For(i,a,b) for (int i=a;i<=b;i++)
#define Fod(i,b,a) for (int i=b;i>=a;i--)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define _SEED_ ('C'+'L'+'Y'+'A'+'K'+'I'+'O'+'I')
#define outval(x) printf(#x" = %d\n",x)
#define outvec(x) printf("vec "#x" = ");for (auto _v : x)printf("%d ",_v);puts("")
#define outtag(x) puts("----------"#x"----------")
#define outarr(a,L,R) printf(#a"[%d...%d] = ",L,R);\
For(_v2,L,R)printf("%d ",a[_v2]);puts("");
using namespace std;
typedef long long LL;
LL read(){
LL x=0,f=0;
char ch=getchar();
while (!isdigit(ch))
f|=ch=='-',ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return f?-x:x;
}
const int N=500005,mod=19491001,G=7;
int Pow(int x,int y){
int ans=1;
for (;y;y>>=1,x=(LL)x*x%mod)
if (y&1)
ans=(LL)ans*x%mod;
return ans;
}
int n,k,d;
int Fac[N],Inv[N];
void prework(){
int n=N-1;
for (int i=Fac[0]=1;i<=n;i++)
Fac[i]=(LL)Fac[i-1]*i%mod;
Inv[n]=Pow(Fac[n],mod-2);
Fod(i,n,1)
Inv[i-1]=(LL)Inv[i]*i%mod;
}
int C(int n,int m){
if (m>n||m<0)
return 0;
return (LL)Fac[n]*Inv[m]%mod*Inv[n-m]%mod;
}
int main(){
prework();
n=read(),k=read(),d=read();
if (d==1){
cout<<Pow(k,n)<<endl;
}
else if (d==2){
int ans=0;
For(i,0,k){
int c=(i-(k-i)+mod)%mod;
ans=((LL)C(k,i)*Pow(c,n)+ans)%mod;
}
ans=(LL)ans*Pow(2,mod-1-k)%mod;
cout<<ans<<endl;
}
else {
int ans=0;
int w0=1,w1=Pow(G,(mod-1)/3),w2=(LL)w1*w1%mod;
For(i,0,k)
For(j,0,k-i){
int c=((LL)w0*i+(LL)w1*j+(LL)w2*(k-i-j))%mod;
ans=((LL)C(k,i)*C(k-i,j)%mod*Pow(c,n)+ans)%mod;
}
ans=(LL)ans*Pow(3,mod-1-k)%mod;
cout<<ans<<endl;
}
return 0;
}