POJ 2318 TOYS (叉乘判断)

<题目链接>

题目大意:

给出矩形4个点和n个挡板俩顶点的位置,这n个挡板将该矩形分成 n+1块区域,再给你m个点的坐标,然你输出每个区域内有几个点。

解题思路:

用叉乘即可简单判断点与直线的位置关系,对每一个点,遍历挡板,直到找到符合的区间为止。

 

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

const int maxn=5000+100;
int map[maxn+100];
int n,m;


struct Point
{
    int x,y;
    Point(int a=0,int b=0):x(a),y(b){}
    Point operator - (const Point&b)const 
    {
        return Point(x-b.x,y-b.y);
    }

    int operator ^(const Point&b)const    //重载叉乘符号
    {
        return x*b.y-y*b.x;     //两向量叉乘公式
    }
};


struct Line
{
    Point a,b;
    Line(){}
    Line(Point m,Point n):a(m),b(n){}
};
Line arr[maxn+100];
Point brr[maxn+100];
// 求叉积
int Mulcross(Point p0,Point p1,Point p2)
{
    return (p1-p0)^(p2-p0);      //计算
}  //不一定是这个顺序计算,只要保证两个向量有共同的顶点,和下面的>0判断相应改变即可,你可以以p0或p2为顶点


void juge(Point goal)
{
    // 从第一条线向后遍历,如果点在该线左面,则该下标total++
    for(int i=0;i<n;i++)
    {
         //这里根据叉乘判断点与直线的方向,主要的依据就是两个向量叉乘的右手定则,若朝平面下,则<0,若朝平面上则>0,然后自己画图理解一下 
        if(Mulcross(arr[i].b,goal,arr[i].a)>0)continue;         // 如果点在挡板的右边,则继续看下一个区间是否符合
        else
        {
            map[i]+=1;      //如果点在挡板的左边,那么当前区间点的个数+1
            return;
        }
    }
    // 找到最后都没找到,就是在最后一个区域
    map[n]+=1;
}


int main()
{
    int ncase=0;
    while(scanf("%d",&n)!=EOF,n)
    {
        memset(map,0,sizeof(map));
        int marx1,mary1,marx2,mary2;
        scanf("%d%d%d%d%d",&m,&marx1,&mary1,&marx2,&mary2);
        for(int i=0;i<n;i++)     //挡板的坐标
        {
            int x1,x2;
            scanf("%d %d",&x1,&x2);
            arr[i].a.x=x1;arr[i].a.y=mary1;
            arr[i].b.x=x2;arr[i].b.y=mary2;
        }

        for(int i=0;i<m;i++)    //点的坐标
        {
            int a,b;
            scanf("%d %d",&a,&b);
            juge(Point(a,b));     //找到点的区间
        }
        
        for(int i=0;i<=n;i++)
        {
            printf("%d: %d\n",i,map[i]);
        }
        printf("\n");
    }
    return 0;
}

 

 

二分查找的方法

<转载于>

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <map>
#include <vector>
#include <set>
#include <string>
#include <math.h>

using namespace std;
struct Point
{
    int x,y;
    Point(){}
    Point(int _x,int _y)
    {
        x = _x;y = _y;
    }
    Point operator -(const Point &b)const     //向量相减
    {
        return Point(x - b.x,y - b.y);
    }
    int operator *(const Point &b)const       //向量相乘
    {
        return x*b.x + y*b.y;
    }
    int operator ^(const Point &b)const       
    {
        return x*b.y - y*b.x;
    }
};
struct Line
{
    Point s,e;
    Line(){}
    Line(Point _s,Point _e)    
    {
        s = _s;e = _e;
    }
};

int xMult(Point p0,Point p1,Point p2) //计算p0p1 X p0p2
{
    return (p1-p0)^(p2-p0);
}

const int MAXN = 5050;
Line line[MAXN];
int ans[MAXN];

int main()
{
    int n,m,x1,y1,x2,y2;
    bool first = true;
    while(scanf("%d",&n) == 1 && n)
    {
        if(first)first = false;
        else printf("\n");
        scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2);
        int Ui,Li;
        for(int i = 0;i < n;i++)
        {
            scanf("%d%d",&Ui,&Li);
            line[i] = Line(Point(Ui,y1),Point(Li,y2));
        }
        line[n] = Line(Point(x2,y1),Point(x2,y2));
        int x,y;
        Point p;
        memset(ans,0,sizeof(ans));
        while( m-- )
        {
            scanf("%d%d",&x,&y);
            p = Point(x,y);
            int l = 0,r = n;
            int tmp;
            while( l <= r)
            {
                int mid = (l + r)/2;
                if(xMult(p,line[mid].s,line[mid].e) < 0)
                {
                    tmp = mid;
                    r = mid - 1;
                }
                else l = mid + 1;
            }
            ans[tmp]++;
        }
        for(int i = 0; i <= n;i++)
            printf("%d: %d\n",i,ans[i]);
    }
    return 0;
}

 

 

2018-08-01

转载于:https://www.cnblogs.com/00isok/p/9404589.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值