A. Vasya and Book

本文解析了Codeforces竞赛中的A题,讨论了如何通过计算翻页次数来确定能否达到目标页面,以及如何找到最少翻页次数的方法。文章详细分析了不同情况下的翻页策略,并提供了具体的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目原址

http://codeforces.com/contest/1082/problem/A

题目内容

一共n页书,现在位于第x位,想要看第y页,每次只能翻d页,注意总能翻到第1页和第n页。

Vasya想知道自己能否在经过无数次翻书后 看到第y页的内容。

如果可以,请给出最少需要翻几次书。

题目解析

类似一个模除的问题。

首先思考无法翻到第y页的情况,即:

①直接翻翻不到

②在到达第1页和第n页后也翻不到

对应的式子引出的是:

直接翻不到:

abs(y - x) % d != 0

第1页翻不到:

abs(y - 1) % d != 0

第n页翻不到:

abs(n - y) % d != 0

因此翻不到的情况很好判断。注:以下简记 左不通 和 右不通 分别代表第一页翻不到和第n页翻不到。

再看最小翻阅次数,这里可以详尽的判断所有情况,也可以统一完成,本人采用的是详尽的判断。

将所有可能性列举出来,即左不通而右通,那么最短翻阅只有右侧的一种方式。

对应的代码部分为:

if(abs(y - 1) % d != 0){    //左侧不通 
                //int temp = need(x, y, d);
                if(abs(n - y) % d != 0){    //右侧不通 
                    puts("-1");
                    continue;
                }
                else {
                    count += need(x, n, d);
                    count += need(n, y, d);
                    cout << count << endl;
                    continue;
                }
}

其中,need()函数用来计算从x到y在每次翻阅d的情况下直接到达需要的翻阅次数,如下:

int need(int x, int y, int d){    //3 - 6 3
    if(abs(y - x) % d == 0){
        return abs(y - x) / d;
    }
    else {
        return abs(y - x) / d + 1;
    }
} 

当右侧不通,而左侧通的时候,情况类似上述:

else if(abs(n - y) % d != 0){    //右侧不通 
                //int temp = need(x, y, d);
                count += need(x, 1, d);
                count += need(1, y, d);
                cout << count << endl;
                continue;
}

而当左右都可通过的时候,只需计算左右两种方式中翻阅数的最小者即可。

else{
            int left = need(x, 1, d) + need(1, y, d);
            int right = need(x, n, d) + need(n, y, d);
            count = min(left, right);
            cout << count << endl;
            continue;
}

题目也可以将不通返回正无穷,从而在返回最小值的过程中失效,减少判断。

题目总结

很简单的题目,没有考察到算法知识,只是考验编程者对于多种判断情况的处理。做题时应先想好思路再完成。

 

转载于:https://www.cnblogs.com/Little-Rabbit/p/10061786.html

### Codeforces Round 260 Div. 1 题目及题解 #### A. Vasya and Multisets 在这道题目中,Vasya有一个由n个整数组成的序列。目标是通过将这些数分成若干组,使得每组中的所有数都相同,并且尽可能减少分组的数量。 为了实现这一目的,可以利用贪心算法来解决这个问题。具体来说,在遍历输入数据的同时维护当前最大频率计数器,对于每一个新遇到的不同数值增加一个新的集合[^1]。 ```cpp #include <bits/stdc++..h> using namespace std; void solve() { int n; cin >> n; unordered_map<int, int> freq; for (int i = 0; i < n; ++i) { int x; cin >> x; freq[x]++; } int maxFreq = 0; for (auto& p : freq) { maxFreq = max(maxFreq, p.second); } cout << maxFreq << "\n"; } ``` #### B. Pashmak and Graph 此问题涉及图论领域的一个经典最短路径计算案例。给定一张带权无向图以及起点S和终点T,要求求出从S到T经过至少一条边后的最小花费总和。 Dijkstra算法适用于此类场景下的单源最短路径查询任务。初始化距离表dist[]为无穷大(INF),仅设置起始节点的距离为零;随后借助优先队列选取未访问过的最近邻接顶点u更新其相邻结点v至目前为止所知的最佳到达成本min{dist[u]+w(u,v)}直至找到终止条件即抵达目的地t或处理完毕所有可达区域内的候选者为止。 ```cpp typedef pair<long long,int> pli; const long long INF = LLONG_MAX / 3; struct Edge { int to, cost; }; vector<Edge> G[MAX_V]; long long d[MAX_V]; bool dijkstra(int s, int t){ priority_queue<pli,vector<pl>,greater<pl>> que; fill(d,d+MAX_V,INF); d[s]=0; que.push(pli(0,s)); while(!que.empty()){ pli p=que.top();que.pop(); int v=p.second; if(d[v]<p.first) continue; for(auto e:G[v]){ if(d[e.to]>d[v]+e.cost){ d[e.to]=d[v]+e.cost; que.push(pli(d[e.to],e.to)); } } } return d[t]!=INF; } ``` #### C. DZY Loves Colors 这是一道关于颜色染色的问题。给出长度为N的一维网格,初始状态下每个格子都有一个默认的颜色编号。现在有M次操作机会改变某些位置上的色彩值,最终目的是统计整个条带上共有几种不同的色调存在。 采用离散化技术预处理原始输入并记录下各段连续同色区间的端点坐标范围,之后针对每一次修改请求动态调整受影响部分的信息结构体(如线段树),最后依据累积的结果得出答案。 ```cpp // 假设已经实现了上述提到的数据结构 SegmentTree 和 update 函数 SegmentTree st; for(int i=1;i<=m;++i){ int l,r,c; scanf("%d%d%d",&l,&r,&c); update(l,r,c); } printf("%lld\n",st.query()); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值