Given an array with n integers, you need to find if there are triplets (i, j, k) which satisfies following conditions:
- 0 < i, i + 1 < j, j + 1 < k < n - 1
- Sum of subarrays (0, i - 1), (i + 1, j - 1), (j + 1, k - 1) and (k + 1, n - 1) should be equal.
where we define that subarray (L, R) represents a slice of the original array starting from the element indexed L to the element indexed R.
Example:
Input: [1,2,1,2,1,2,1] Output: True Explanation: i = 1, j = 3, k = 5. sum(0, i - 1) = sum(0, 0) = 1 sum(i + 1, j - 1) = sum(2, 2) = 1 sum(j + 1, k - 1) = sum(4, 4) = 1 sum(k + 1, n - 1) = sum(6, 6) = 1
Note:
- 1 <= n <= 2000.
- Elements in the given array will be in range [-1,000,000, 1,000,000].
给一个数组,找出三个位置,使得数组被分为四段,使得每段之和相等,问存不存在这样的三个位置,注意三个位置上的数字不属于任何一段。
解法1: 暴力法,那就是三重循环,时间复杂度是O(n^3),空间复杂度是O(n)。过不了大数据, TLE。
解法2: 采用空间换时间,从中间进行分割,然后在前半部分进行搜索,看看是不是可以找到和相同的划分,如果找到了,就将和加入哈希表中;然后再在后半部分进行搜索,如果找到了和相同的划分并且该和也存在于哈希表中,这说明找到了合适的i,j,k,可以将数组划分为和相同的四个部分,返回true。这样时间复杂度就降低成了O(n^2)。
解法3: 建立一个长度为数组长度的sum[i],然后计算出每一个位置的它前面所有数字的和,这样就避免了以后大量的重复计算和的运算。然后计算i-j是否有满足1-i的和等于i-j, 有的话存到set里,避免重复计算。然后在计算位置k,是否也等于之前set里的值,如果有就返回True.
解法4: 用数组sums记录前n项和,在用字典idxs统计sums元素对应的下标列表,根据sums和idxs枚举满足(0, i - 1) == (i + 1, j - 1)条件的i,j。利用字典jlist记录子数组和对应的j值列表。最后遍历k,枚举jlist中子数组和(k + 1, n - 1)对应的j值,然后判断是否存在 (j + 1, k - 1) 与 (k + 1, n - 1) 相等
Java: 暴力, TLE
public class Solution {
public int sum(int[] nums, int l, int r) {
int summ = 0;
for (int i = l; i < r; i++)
summ += nums[i];
return summ;
}
public boolean splitArray(int[] nums) {
if (nums.length < 7)
return false;
for (int i = 1; i < nums.length - 5; i++) {
int sum1 = sum(nums, 0, i);
for (int j = i + 2; j < nums.length - 3; j++) {
int sum2 = sum(nums, i + 1, j);
for (int k = j + 2; k < nums.length - 1; k++) {
int sum3 = sum(nums, j + 1, k);
int sum4 = sum(nums, k + 1, nums.length);
if (sum1 == sum2 && sum3 == sum4 && sum2 == sum4)
return true;
}
}
}
return false;
}
}
Java: 暴力,TLE
public class Solution {
public boolean splitArray(int[] nums) {
if (nums.length < 7)
return false;
int[] sum = new int[nums.length];
sum[0] = nums[0];
for (int i = 1; i < nums.length; i++) {
sum[i] = sum[i - 1] + nums[i];
}
for (int i = 1; i < nums.length - 5; i++) {
int sum1 = sum[i - 1];
for (int j = i + 2; j < nums.length - 3; j++) {
int sum2 = sum[j - 1] - sum[i];
for (int k = j + 2; k < nums.length - 1; k++) {
int sum3 = sum[k - 1] - sum[j];
int sum4 = sum[nums.length - 1] - sum[k];
if (sum1 == sum2 && sum3 == sum4 && sum2 == sum4)
return true;
}
}
}
return false;
}
}
Java: TLE
public class Solution {
public boolean splitArray(int[] nums) {
if (nums.length < 7)
return false;
int[] sum = new int[nums.length];
sum[0] = nums[0];
for (int i = 1; i < nums.length; i++) {
sum[i] = sum[i - 1] + nums[i];
}
for (int i = 1; i < nums.length - 5; i++) {
int sum1 = sum[i - 1];
for (int j = i + 2; j < nums.length - 3; j++) {
int sum2 = sum[j - 1] - sum[i];
if (sum1 != sum2)
continue;
for (int k = j + 2; k < nums.length - 1; k++) {
int sum3 = sum[k - 1] - sum[j];
int sum4 = sum[nums.length - 1] - sum[k];
if (sum3 == sum4 && sum2 == sum4)
return true;
}
}
}
return false;
}
}
Java: Accepted
public class Solution {
public boolean splitArray(int[] nums) {
if (nums.length < 7)
return false;
int[] sum = new int[nums.length];
sum[0] = nums[0];
for (int i = 1; i < nums.length; i++) {
sum[i] = sum[i - 1] + nums[i];
}
for (int j = 3; j < nums.length - 3; j++) {
HashSet < Integer > set = new HashSet < > ();
for (int i = 1; i < j - 1; i++) {
if (sum[i - 1] == sum[j - 1] - sum[i])
set.add(sum[i - 1]);
}
for (int k = j + 2; k < nums.length - 1; k++) {
if (sum[nums.length - 1] - sum[k] == sum[k - 1] - sum[j] && set.contains(sum[k - 1] - sum[j]))
return true;
}
}
return false;
}
}
Python:
# Time: O(n^2)
# Space: O(n)
class Solution(object):
def splitArray(self, nums):
"""
:type nums: List[int]
:rtype: bool
"""
if len(nums) < 7:
return False
accumulated_sum = [0] * len(nums)
accumulated_sum[0] = nums[0]
for i in xrange(1, len(nums)):
accumulated_sum[i] = accumulated_sum[i-1] + nums[i]
for j in xrange(3, len(nums)-3):
lookup = set()
for i in xrange(1, j-1):
if accumulated_sum[i-1] == accumulated_sum[j-1] - accumulated_sum[i]:
lookup.add(accumulated_sum[i-1])
for k in xrange(j+2, len(nums)-1):
if accumulated_sum[-1] - accumulated_sum[k] == accumulated_sum[k-1] - accumulated_sum[j] and \
accumulated_sum[k - 1] - accumulated_sum[j] in lookup:
return True
return False
Python:
class Solution(object):
def splitArray(self, nums):
"""
:type nums: List[int]
:rtype: bool
"""
size = len(nums)
sums = [0] * (size + 1)
for x in range(size):
sums[x + 1] += sums[x] + nums[x]
idxs = collections.defaultdict(list)
for x in range(size):
idxs[sums[x + 1]].append(x)
jlist = collections.defaultdict(list)
for i in range(1, size):
for j in idxs[2 * sums[i] + nums[i]]:
if i < j < size:
jlist[sums[i]].append(j + 1)
for k in range(size - 2, 0, -1):
for j in jlist[sums[size] - sums[k + 1]]:
if j + 1 > k: continue
if sums[k] - sums[j + 1] == sums[size] - sums[k + 1]:
return True
return False
C++:
class Solution {
public:
bool splitArray(vector<int>& nums) {
if (nums.size() < 7) return false;
int n = nums.size();
vector<int> sums = nums;
for (int i = 1; i < n; ++i) {
sums[i] = sums[i - 1] + nums[i];
}
for (int j = 3; j < n - 3; ++j) {
unordered_set<int> s;
for (int i = 1; i < j - 1; ++i) {
if (sums[i - 1] == (sums[j - 1] - sums[i])) {
s.insert(sums[i - 1]);
}
}
for (int k = j + 1; k < n - 1; ++k) {
int s3 = sums[k - 1] - sums[j], s4 = sums[n - 1] - sums[k];
if (s3 == s4 && s.count(s3)) return true;
}
}
return false;
}
};
C++:
class Solution {
public:
bool splitArray(vector<int>& nums) {
if (nums.size() < 7) return false;
int n = nums.size(), target = 0;
int sum = accumulate(nums.begin(), nums.end(), 0);
for (int i = 1; i < n - 5; ++i) {
if (i != 1 && nums[i] == 0 && nums[i - 1] == 0) continue;
target += nums[i - 1];
if (helper(nums, target, sum - target - nums[i], i + 1, 1)) {
return true;
}
}
return false;
}
bool helper(vector<int>& nums, int target, int sum, int start, int cnt) {
if (cnt == 3) return sum == target;
int curSum = 0, n = nums.size();
for (int i = start + 1; i < n + 2 * cnt - 5; ++i) {
curSum += nums[i - 1];
if (curSum == target && helper(nums, target, sum - curSum - nums[i], i + 1, cnt + 1)) {
return true;
}
}
return false;
}
C++: 暴力+优化
class Solution {
public:
bool splitArray(vector<int>& nums) {
int n = nums.size();
vector<int> sums = nums;
for (int i = 1; i < n; ++i) {
sums[i] = sums[i - 1] + nums[i];
}
for (int i = 1; i <= n - 5; ++i) {
if (i != 1 && nums[i] == 0 && nums[i - 1] == 0) continue;
for (int j = i + 2; j <= n - 3; ++j) {
if (sums[i - 1] != (sums[j - 1] - sums[i])) continue;
for (int k = j + 2; k <= n - 1; ++k) {
int sum3 = sums[k - 1] - sums[j];
int sum4 = sums[n - 1] - sums[k];
if (sum3 == sum4 && sum3 == sums[i - 1]) {
return true;
}
}
}
}
return false;
}
};
类似题目:
Split an array into two equal Sum subarrays
All LeetCode Questions List 题目汇总