Problem
Given an array with n integers, you need to find if there are triplets (i, j, k) which satisfies following conditions:
0 < i, i + 1 < j, j + 1 < k < n - 1
Sum of subarrays (0, i - 1), (i + 1, j - 1), (j + 1, k - 1) and (k + 1, n - 1) should be equal.
where we define that subarray (L, R) represents a slice of the original array starting from the element indexed L to the element indexed R.
Example:
Input: [1,2,1,2,1,2,1]
Output: True
Explanation:
i = 1, j = 3, k = 5.
sum(0, i - 1) = sum(0, 0) = 1
sum(i + 1, j - 1) = sum(2, 2) = 1
sum(j + 1, k - 1) = sum(4, 4) = 1
sum(k + 1, n - 1) = sum(6, 6) = 1
Note:
1 <= n <= 2000.
Elements in the given array will be in range [-1,000,000, 1,000,000].
Solution
class Solution {
public boolean splitArray(int[] nums) {
if (nums == null || nums.length < 7) return false;
int len = nums.length;
int[] sum = new int[len];
sum[0] = nums[0];
for (int i = 1; i < len; i++) {
sum[i] = sum[i-1]+nums[i];
}
// 0 ~ i-1 | i+1 ~ mid-1 | mid+1 ~ k-1 | k+1 ~ len-1
for (int mid = 3; mid < len-3; mid++) {
Set<Integer> set = new HashSet<>();
for (int i = 1; i <= mid-2; i++) {
//save quarter sum into hashset
if (sum[i-1] == sum[mid-1]-sum[i]) set.add(sum[i-1]);
}
for (int k = mid+2; k <= len-2; k++) {
if (sum[len-1]-sum[k] == sum[k-1]-sum[mid]) {
int quarterSum = sum[len-1]-sum[k];
if (set.contains(quarterSum)) return true;
}
}
}
return false;
}
}