吴恩达(Stanford 人工智能实验室主任,coursera联合创始人)开设课程,目前coursera上最受欢迎的机器学习课程
machine learning公开课 :
https://www.coursera.org/learn/machine-learning/home/welcome
deep learning 系列 :
https://www.coursera.org/learn/neural-networks-deep-learning/home/welcome
https://www.coursera.org/learn/deep-neural-network/home/welcome
https://www.coursera.org/learn/machine-learning-projects/home/welcome
https://www.coursera.org/learn/convolutional-neural-networks/home/welcome
https://www.coursera.org/learn/nlp-sequence-models/home/welcome
Stanford计算机视觉基础课程,涵盖边缘检测,直线检测,角点检测,卷积等基本概念,适合入门
提供课件下载:
http://vision.stanford.edu/teaching/cs131_fall1718/syllabus.html
李飞飞(Stanford人工智能实验室与视觉实验室负责人,谷歌人工智能和机器学习首席科学家)开设
网易云课堂:
http://study.163.com/course/courseMain.htm?courseId=1004697005
- Hinton机器学习与神经网络
Geoffrey Hinton(Toronto大学教授,深度学习鼻祖)开设,涵盖深度学习基础入门知识
http://study.163.com/course/courseMain.htm?courseId=1003842018
- 入门书籍(Linux aria2 下载百度网盘)
深度学习中文版(深度学习领域圣经)
https://pan.baidu.com/s/1sdWzbJBgHy9RGQIr3Hlu9Q
统计学习基础(统计学习三大要素:模型+策略+算法)
https://pan.baidu.com/s/1_NGryh6eBbcA-AukB1qd1g
21天实战Caffe(从配置,部署到源码分析,深入浅出)
https://pan.baidu.com/s/16YZp46dg2i-hmhId7WlQLA
TensorFlow技术实战与解析(从模型构建到源码分析)
https://pan.baidu.com/s/19fat-gXcyYQ0Hzt79WujhA
- 竞赛
Large Scale Visual Recognition Challenge(每年都有较高难度的挑战赛,参赛大多为企业)
http://image-net.org/challenges/LSVRC/2017/index
Kaggle(提供更多面向个人的机器学习挑战赛)
https://www.kaggle.com/competitions
天池(阿里大数据竞赛平台,包含较多的AI课程)
https://tianchi.aliyun.com/learn/index.htm
- Caffe社区
https://groups.google.com/forum/#!forum/caffe-users
- 辅助阅读(以课件为主)
Stanford CS 20: Tensorflow for Deep Learning Research
https://www.youtube.com/watch?v=g-EvyKpZjmQ&list=PLIDllPt3EQZoS8gCP3cw273Cq9puuPLTg
http://web.stanford.edu/class/cs20si/syllabus.html
Stanford CS 229T: Statistical Learning Theory
http://web.stanford.edu/class/cs229t/syllabus.html
Stanford CS 231A: Computer Vision, From 3D Reconstruction to Recognition
http://web.stanford.edu/class/cs231a/syllabus.html
Stanford CS 231B: The Cutting Edge of Computer Vision
http://vision.stanford.edu/teaching/cs231b_spring1415/syllabus.html
Stanford CS 221: Artificial Intelligence: Principles and Techniques
http://web.stanford.edu/class/cs221/index.html
Stanford CS 369L: Algorithmic Perspective on Machine Learning
http://people.csail.mit.edu/moitra/docs/bookex.pdf
Stanford CS 205 Mathematical Methods for Robotics, Vision, and Graphics
http://graphics.stanford.edu/courses/cs205a/schedule.html
Stanford CS 231M Mobile Computer Vision
http://web.stanford.edu/class/cs231m/syllabus.html
CMU 16-824 Visual Learning and Recognition
http://graphics.cs.cmu.edu/courses/16-824/2016_spring/schedule.html