【POJ3280/洛谷2890】[Usaco2007 Open Gold]Cheapest Palindrome(动态规划)

题目:

POJ3280

洛谷2980

分析:

首先,考虑只可以加字的情况

\(s[i]\)表示第\(i\)个字符,\(add[i]\)表示加上一个字母\(i\)的花费,\(dp[i][j]\)表示把区间\(i\)~\(j\)变成回文串的花费,那么

1.如果\(s[i]=s[j]\),那么只需要把\((i+1)\)~\((j-1)\)变成回文串就可以了,


\[dp[i][j]=dp[i+1][j-1]\]

2.如果\(s[i] \neq s[j]\),那么可以先把\(i\)~\((j-1)\)变成回文串,然后在前面加一个\(s[j]\),和\(i\)~\(j\)串尾的\(s[j]\)对应上,


\[dp[i][j]=dp[i][j-1]+add[s[j]]\]

同理,也可以先把\((i+1)\)~\(j\)变成回文串,然后在后面加一个\(s[i]\),和\(i\)~\(j\)串首的\(s[i]\)对应上,


\[dp[i][j]=dp[i+1][j]+add[s[i]]\]

在这两种方法中取花费较小的一个。

边界条件:当\(i=j\),只有一个字符的字符串显然是回文串

然后考虑还可以减字的情况

\(del[i]\)表示减去一个字母i的花费,其余同上。

显然,\(s[i]=s[j]\)的情况是不受影响的。

我们来讨论\(s[i] \neq s[j]\)的情况:

我们也可以先把\(i\)~\((j-1)\)变成回文串,然后删掉\(i\)~\(j\)串尾的\(s[j]\),这样它就变成回文串了


\[dp[i][j]=dp[i][j-1]+del[s[j]]\]

发现什么了?这只是把上面的第二个状态转移方程中\(add[s[j]]\)变成了\(del[s[j]]\)!

同理,也有
\[dp[i][j]=dp[i+1][j]+del[s[i]]\]

总结一下,当\(s[i] \neq s[j]\)时,一共有如下四种转移,取最小值即可:

\[dp[i][j]=dp[i][j-1]+add[s[j]]\]

\[dp[i][j]=dp[i+1][j]+add[s[i]]\]

\[dp[i][j]=dp[i][j-1]+del[s[j]]\]

\[dp[i][j]=dp[i+1][j]+del[s[i]]\]

其实到这里已经可以写这道题了,但是可以发现一个有趣的事情

如果设\(c[i]=min(add[i],del[i])\),那么……

第一个和第三个方程合作一下得到:

\[dp[i][j]=dp[i+1][j]+c[s[i]]\]

第二个和第四个方程合作一下得到:

\[dp[i][j]=dp[i][j-1]+c[s[j]]\]

所以这题的可以加减字符就是个幌子,取每个字符加字和减字的较小值作为该字符的花费就可以啊2333

代码:

(注意一下字符的读法,一定要防止读进来' '或者'\n'之类奇怪的东西)

#include<cstdio>
#include<algorithm>
using namespace std;
int dp[2010][2010],n,m,cost[26];
const int INF=0x3f3f3f3f;
char s[2010];
int main(void)
{
    scanf("%d%d%s",&n,&m,s);
    for(int i=0;i<n;i++)
    {
        char a;
        int b,c;
        do{a=getchar();}while(!('a'<=a&&a<='z'));
        scanf("%d%d",&b,&c);
        cost[a-'a']=min(b,c);
    }
    for(int len=2;len<=m;len++)
        for(int i=0;i<=m-len;i++)
        {
            int j=i+len-1;
            dp[i][j]=INF;
            if(s[i]==s[j])
                dp[i][j]=dp[i+1][j-1];
            else
                dp[i][j]=min(dp[i+1][j]+cost[s[i]-'a'],dp[i][j-1]+cost[s[j]-'a']);
        }
    printf("%d",dp[0][m-1]);
    return 0;
}

转载于:https://www.cnblogs.com/zyt1253679098/p/9190193.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值