lstm如何输入多维序列_深度学习也可以做时间序列异常诊断

本文介绍了如何利用GRU、VAE进行多维时间序列异常诊断。GRU是RNN的一种,通过门控机制解决长期依赖问题。自编码器用于数据降维和特征抽取,而VAE增强了生成能力。通过GRU学习正常序列依赖,结合VAE构建模型,实现异常检测。论文提供了详细的异常判断阀值方法及开源代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

331ed3b3a3da4fa6146a763a2a39086e.png

最近在看的一篇论文里,用到了GRU、VAE等技术来做多维时间序列异常诊断。

那么今天首先来聊一聊深度学习的基础知识,然后简单说一下论文。

以下基础知识部分的内容,主要来源于李宏毅老师的课程。有兴趣的可以去看李老师的课程哦

https://www.bilibili.com/video/BV1JE411g7XF?p=1

1、GRU(Gate Recurrent Unit):

GRU是循环神经网络(Recurrent Neural Network, RNN)的一种,和LSTM(Long-Short Term Memory)一样,也是为了解决长期记忆和反向传播中的梯度等问题而提出来的。

概括来说,LSTM和CRU都是通过各种门函数来将重要特征保留下来,这样就保证了在long-term传播的时候也不会丢失。

而且,GRU相对于LSTM少了一个门函数,GRU 只剩下两个门,即更新门重置门。从直观上来说,重置门决定了如何将新的输入信息与前面的记忆相结合,更新门定义了前面记忆保存到当前时间步的量。

因此,GRU参数的数量上也是要少于LSTM的,所以整体上GRU的训练速度要快于LSTM的。

2、自编码器(auto-encoder):

auto encoder是一种无监督

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值