Codeforces Beta Round #17 A - Noldbach problem 暴力

A - Noldbach problem

题面链接

http://codeforces.com/contest/17/problem/A

题面

Nick is interested in prime numbers. Once he read about Goldbach problem. It states that every even integer greater than 2 can be expressed as the sum of two primes. That got Nick's attention and he decided to invent a problem of his own and call it Noldbach problem. Since Nick is interested only in prime numbers, Noldbach problem states that at least k prime numbers from 2 to n inclusively can be expressed as the sum of three integer numbers: two neighboring prime numbers and 1. For example, 19 = 7 + 11 + 1, or 13 = 5 + 7 + 1.

Two prime numbers are called neighboring if there are no other prime numbers between them.

You are to help Nick, and find out if he is right or wrong.

输入

The first line of the input contains two integers n (2 ≤ n ≤ 1000) and k (0 ≤ k ≤ 1000).

输出

Output YES if at least k prime numbers from 2 to n inclusively can be expressed as it was described above. Otherwise output NO.

题意

问你在[2,n]里面是否至少有k个质数由1+两个相邻的素数组成呢?

题解

直接暴力模拟就好了嘛

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1005;
int pri[maxn],n,k;
void pre()
{
    pri[0]=1,pri[1]=1;
    for(int i=2;i<maxn;i++){
        if(pri[i])continue;
        for(int j=i+i;j<maxn;j+=i)
            pri[j]=1;
    }
}
int main()
{
    pre();
    scanf("%d%d",&n,&k);
    int ans = 0;
    for(int i=2;i<=n;i++){
        if(pri[i])continue;
        int flag = 0;
        for(int j=2;j<i;j++){
            if(pri[j])continue;
            for(int k=j+2;k+j<=i;k++){
                if(!pri[k]&&!pri[j]&&k+j==i-1)
                    flag = 1;
                if(!pri[k])break;
            }
        }
        if(flag)ans++;
    }
    if(ans>=k)cout<<"YES"<<endl;
    else cout<<"NO"<<endl;
}

转载于:https://www.cnblogs.com/qscqesze/p/6169840.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值