迁移学习

Transfer Learning

当只有一个小的数据集时,修改最后一层的特征到最后的分类输出之间的全连接层,只需要重新随机初始化这部分矩阵,冻结前面层的权重,相当于只训练一个线性分类器。

当有一个稍微大的数据集时,可以微调整个网络,一般将学习率调低来训练,因为最初的网络参数是在Imagenet上收敛的,泛化能力已经很强了,只需要微小的改变来适应自己的数据集。

 

训练策略:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

转载于:https://www.cnblogs.com/Manuel/p/11049925.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值