Hardy-Littlewood极大函数的应用

设$M$是Hardy-Littlewood极大算子, 关于它的应用, 我们在课程上详细讲过, 这里做个总结, 主要集中在如下几个方面:

1. 点态极限的极大函数办法(例如Lebesgue微分定理)

2. 点态估计($M$可以用来控制一大类"平均"算子, 例如卷积型算子)

\[|f(x)|\leq Mf(x), \quad a.e. x\in \mathbf{R}^n; \qquad \|Mf\|_p\sim \|f\|_p, 1<p\leq \infty.\]

3. 与二进制分解算子的搭配使用, 可以使得在逐点估计中能得到精细的估计, 例如分数次微积分(分数次链式法则, 分数次Leibniz法则)

事实上, $M$的应用还有很多, 可以参考Stein的书(非切向极限, 刻划Hardy空间$H^1$); 也可参考Tao的讲义 Math247A, Math247B, 给出了在遍历论中的应用.

转载于:https://www.cnblogs.com/zguo/archive/2013/04/01/2994385.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值