素数定理的证明大地图

以下陈列我认为素数定理的应该有的展开途径. 

  1. 定义Riemann zeta函数$$\zeta(s)=\sum_{n\geq 1}\frac{1}{n^s}\qquad \Re s>0 $$证明$\zeta(s)-\frac{1}{s-1}$是全纯的.
  2. 证明如下恒等式$$\Re s>1\quad \Rightarrow \quad \zeta(s)=\prod_{p}\frac{1}{1-\frac{1}{p^s}}\quad\frac{1}{\zeta(s)}=\sum_{n\geq 1}\frac{\mu(n)}{n^s}\quad  -\zeta'(s)=\sum_{n\geq 1}\frac{\log n}{n^s}\quad  -\frac{\zeta'(s)}{\zeta(s)}=\sum_{n\geq 1}\frac{\Lambda(n)}{n^s}$$其中$\Lambda(n)=\begin{cases}\log p& n=p^k\\ 0 & \textrm{其他情况}\end{cases}$. 
  3. 证明$$\sigma>1\quad \Rightarrow \quad |\zeta^3(\sigma)\zeta^4(\sigma+it)\zeta(\sigma+2it)|\geq 1$$从而证明$\zeta(s)$在$\Re s=1$这条直线上没有零点. 
  4. 假设$s=\sigma+it$, 任意$\delta>0$, $$\forall \sigma\geq 1,|t|\geq 1, \quad |\zeta(s)|\leq A_{\delta} |t|^{\delta}\quad \frac{1}{|\zeta(s)|}\leq B_{\delta}|t|^{\delta}\quad|\zeta'(s)|\leq C_{\delta}|t|^\delta\quad  \left|-\frac{\zeta'(s)}{\zeta(s)}\right|\leq D_{\delta}|t|^\delta$$
  5. 证明$$\pi(x)\sim \frac{x}{\log x}\iff \sum_{n\leq x} \Lambda(n)\sim x$$ 
  6. 证明对任何$c>1$, $$\displaystyle \frac{1}{2\pi i}\int_{c-i \infty}^{c+i\infty} \frac{x^s}{s}\textrm{d}s=\begin{cases}1 & x>1\\ 0 & 0<x<1\end{cases}$$ 
  7. 因此$$\sum_{n\leq x} \Lambda(n)= \frac{1}{2\pi i}\int_{c-i \infty}^{c+i\infty} \frac{x^s}{s}\left(-\frac{\zeta'(s)}{\zeta(s)}\right)\textrm{d}s$$
  8. 经过计算$\frac{x^s}{s}\left(-\frac{\zeta'(s)}{\zeta(s)}\right)$在$s=1$的留数就是$x-1$. 
  9. 选择充分大的$T$, 因为无零点, 可以选择充分接近$1$的$\sigma_0$使得在$[\sigma_0,1]\times [-T,T]$内$\zeta(s)$没有零点, 考虑如下五条直线段$$\ell_1=[1-i\infty, 1-iT]\qquad \ell_2=[1-iT,\sigma_0-it]\qquad \ell_3=[\sigma_0-iT,\sigma_0+iT]\qquad \ell_4=[\sigma_0+iT,1+iT]\qquad \ell_5=[1+iT,1+i\infty]$$因为$h(s)$增长缓慢, 利用留数定理有$$\frac{1}{2\pi i}\int_{c-i \infty}^{c+i\infty} \frac{x^s}{s}\left(-\frac{\zeta'(s)}{\zeta(s)}\right)\textrm{d}s=x-1+\frac{1}{2\pi i}\int_{\ell_1+\ell_2+\ell_3+\ell_4+\ell_5}  \frac{x^s}{s}\left(-\frac{\zeta'(s)}{\zeta(s)}\right)\textrm{d}s$$故只要证明$\frac{1}{x}\int_{\ell_1+\ell_2+\ell_3+\ell_4+\ell_5}\frac{x^s}{s}\left(-\frac{\zeta'(s)}{\zeta(s)}\right)\textrm{d}s\to 0$. 
  10. 任意$\epsilon $可以取$T_\epsilon$充分大, 使得$\ell_{1,5}$上积分$\leq \epsilon x$, $\ell_3$上积分$\ll  x^{\sigma_0}$, $\ell_{2,4}$上积分$\ll \frac{x}{\log x}$, 这样$$\left|\int_{\ell_1+\ell_2+\ell_3+\ell_4+\ell_5}\frac{x^s}{s}\left(-\frac{\zeta'(s)}{\zeta(s)}\right)\textrm{d}s\right|\leq \epsilon x+C_{\epsilon}\frac{x}{\log x}$$故$$\left|\frac{1}{x}\int_{\ell_1+\ell_2+\ell_3+\ell_4+\ell_5}\frac{x^s}{s}\left(-\frac{\zeta'(s)}{\zeta(s)}\right)\textrm{d}s\right|\leq \epsilon +\frac{C_{\epsilon}}{\log x} $$令$x$充分大, 命题得证. 

 

转载于:https://www.cnblogs.com/XiongRuiMath/p/9741200.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值