BZOJ.4793.[CERC2016]Hangar Hurdles(Kruskal重构树 BFS)

题目链接

\(Description\)

有一个\(n\times n\)的正方形网格,上面有若干障碍点。\(q\)次询问,每次询问把一个正方形箱子从\((x1,y1)\)推到\((x2,y2)\) ,不能接触障碍点且不超出边界,箱子的边长最大能是多少。
\(n\leq1000,q\leq3\times10^5\)

\(Solution\)

我们可以直接将非障碍点看做顶点,向周围四个非障碍点连边。这样是要求一棵最大生成树。
从每个障碍点做八连通BFS,可以得到通过每个非障碍点位置的最大直径。
然后按最大直径从大到小依次加入点并标为访问过,每次与周围之前被访问过的点连边(也就是枚举权值小的与大的连边,优先连长边,和Kruskal一样)。
其实就是Kruskal重构树。连边时因为权值在点上,所以不需要新建点来表示边了,直接将权值大的点连到权值小的点作为其子节点即可。
两点间路径询问就是直接求LCA的权值了。

复杂度\(O(n^2+q\log n^2)\)

注意初始化dis为INF(否则无障碍点时所有dis都为0)。

//126688kb  9332ms
#include <queue>
#include <cstdio>
#include <cctype>
#include <vector>
#include <cstring>
#include <algorithm>
#define mp std::make_pair
#define pr std::pair<int,int>
//#define gc() getchar()
#define MAXIN 1000000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=1003,M=1e6+5;
const int dd[]={1,0,-1,0,1};
const int dx[]={0,0,-1,-1,-1,1,1,1};
const int dy[]={-1,1,-1,0,1,-1,0,1};

int n,id[N][N],A[M],fa[M];
std::vector<int> v[N];
char IN[MAXIN],*SS=IN,*TT=IN;

namespace HLD
{
    int Enum,H[M],nxt[M],to[M],fa[M],sz[M],son[M],dep[M],top[M];

    inline void AE(int u,int v)
    {
        to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum;
    }
    inline int LCA(int u,int v)
    {
        while(top[u]!=top[v]) dep[top[u]]>dep[top[v]]?u=fa[top[u]]:v=fa[top[v]];
        return dep[u]<dep[v]?u:v;
    }
    void DFS1(int x)
    {
        int mx=0; sz[x]=1;
        for(int i=H[x],v; i; i=nxt[i])
            if((v=to[i])!=fa[x])
            {
                fa[v]=x, dep[v]=dep[x]+1, DFS1(v), sz[x]+=sz[v];
                if(sz[v]>mx) mx=sz[v], son[x]=v;
            }
    }
    void DFS2(int x,int tp)
    {
        top[x]=tp;
        if(son[x])
        {
            DFS2(son[x],tp);
            for(int i=H[x]; i; i=nxt[i])
                if(to[i]!=fa[x]&&to[i]!=son[x]) DFS2(to[i],to[i]);
        }
    }
}

inline int read()
{
    int now=0;register char c=gc();
    for(;!isdigit(c);c=gc());
    for(;isdigit(c);now=now*10+c-'0',c=gc());
    return now;
}
int Find(int x)
{
    return x==fa[x]?x:fa[x]=Find(fa[x]);
}
void Merge(int x,int y)//x<-y
{
    y=Find(y);
    if(x!=y) fa[y]=x, HLD::AE(x,y);
}
void BFS()
{
    static int dis[N][N];
    static bool vis[N][N];
    static std::queue<pr> q;

    memset(dis,0x3f,sizeof dis);
    for(int i=1; i<=n; ++i)
        for(int j=1; j<=n; ++j)
            if(!id[i][j]) q.push(mp(i,j)),vis[i][j]=1,dis[i][j]=0;
    while(!q.empty())
    {
        int x=q.front().first,y=q.front().second;
        q.pop();
        for(int i=0,xn,yn,d=dis[x][y]; i<8; ++i)
            if((xn=x+dx[i])>0&&xn<=n&&(yn=y+dy[i])>0&&yn<=n&&!vis[xn][yn])
                vis[xn][yn]=1, dis[xn][yn]=d+1, q.push(mp(xn,yn));
    }
    for(int i=1; i<=n; ++i)
        for(int j=1,ds,t; j<=n; ++j)
            if(t=id[i][j])
            {
                ds=std::min(dis[i][j],std::min(std::min(i,n-i+1),std::min(j,n-j+1)));
                ds=(ds<<1)-1;//maxd = 2r-1
                A[t]=ds, v[ds].push_back(t);
            }
}

int main()
{
    static pr ref[M];
    static bool vis[N][N];

    n=read(); int cnt=0;
    for(int i=1; i<=n; ++i)
    {
        register char c=gc(); while(c!='.'&&c!='#') c=gc();
        if(c=='.') id[i][1]=++cnt, ref[cnt]=mp(i,1);
        for(int j=2; j<=n; ++j) if(gc()=='.') id[i][j]=++cnt, ref[cnt]=mp(i,j);
    }

    BFS();
    for(int i=1; i<=cnt; ++i) fa[i]=i;
    for(int i=n; i; --i)
    {
        const std::vector<int> &vec=v[i];
        for(int j=0,l=vec.size(); j<l; ++j)
        {
            int t=vec[j],x=ref[t].first,y=ref[t].second;
            vis[x][y]=1;
            for(int i=0,xn,yn; i<4; ++i)
                if((xn=x+dd[i])>0&&xn<=n&&(yn=y+dd[i+1])>0&&yn<=n&&vis[xn][yn])
                    Merge(t,id[xn][yn]);
        }
    }
    for(int i=1; i<=cnt; ++i) if(fa[i]==i) Merge(0,i);
    HLD::DFS1(0), HLD::DFS2(0,0);

    for(int q=read(),p1,p2,x1,y1,x2,y2; q--; )
    {
        p1=id[read()][read()], p2=id[read()][read()];
        if(!p1||!p2) puts("0");
        else printf("%d\n",A[HLD::LCA(p1,p2)]);
    }
    return 0;
}

转载于:https://www.cnblogs.com/SovietPower/p/9764716.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值