bzoj 3159: 决战【LCT】

只是想复健一下LCT没想到做了不得了的题……调了两天QAQ
题解是这么说的:
1242898-20180321170927106-1170406855.png
1242898-20180321170951604-2142963268.png
1242898-20180321171007495-450054717.png
但是果然还不太理解……因为swap的前后问题调了好久,(所以一开始养成的习惯后面就不要再改啦……
总之大概就是把对位置lct的操作映射到权值lct上,然后权值lct可以随便转没问题,只要位置lct不动就可以……
注意reverse!!

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=50005;
int n,q,root,h[N],cnt;
char c[20];
struct qwe
{
    int ne,to;
}e[N<<1];
int read()
{
    int r=0,f=1;
    char p=getchar();
    while(p>'9'||p<'0')
    {
        if(p=='-')
            f=-1;
        p=getchar();
    }
    while(p>='0'&&p<='9')
    {
        r=r*10+p-48;
        p=getchar();
    }
    return r*f;
}
void add(int u,int v)
{
    cnt++;
    e[cnt].ne=h[u];
    e[cnt].to=v;
    h[u]=cnt;
}
struct val
{
    int c[N][2],f[N],tg[N],si[N];
    long long mn[N],mx[N],sum[N],va[N];
    bool re[N];
    void rev(int x)
    {
        swap(c[x][0],c[x][1]);
        re[x]^=1;
    }
    void init(int x,int v)
    {
        si[x]=1;
        mn[x]=mx[x]=va[x]=sum[x]=v;
    }
    void add(int x,int v)
    {//cerr<<x<<" "<<v<<endl;
        if(x)
        {
            sum[x]+=1ll*v*si[x];
            tg[x]+=v;
            mn[x]+=v;
            mx[x]+=v;
            va[x]+=v;
        }
    }
    int fdrt(int x)
    {cerr<<"fdrt"<<x<<endl;
        while(f[x])
            x=f[x];//cerr<<x<<endl;
        return x;
    }
    void ud(int x)
    {
        si[x]=1,mn[x]=mx[x]=sum[x]=va[x];
        if(c[x][0]) 
        {
            si[x]+=si[c[x][0]];
            mn[x]=min(mn[x],mn[c[x][0]]);
            mx[x]=max(mx[x],mx[c[x][0]]);
            sum[x]+=sum[c[x][0]];
        }
        if(c[x][1]) 
        {
            si[x]+=si[c[x][1]];
            mn[x]=min(mn[x],mn[c[x][1]]);
            mx[x]=max(mx[x],mx[c[x][1]]);
            sum[x]+=sum[c[x][1]];
        }
    }
    void pd(int x)
    {
        if(re[x])
        {
            rev(c[x][0]);
            rev(c[x][1]);
            re[x]=0;
        }
        if(tg[x])
        {
            add(c[x][0],tg[x]);
            add(c[x][1],tg[x]);
            tg[x]=0;
        }
    }
    int ppd(int x)
    {
        int anc=srt(x)?x:ppd(f[x]);
        pd(x);
        return anc;
    }
    bool srt(int x)
    {
        return c[f[x]][0]!=x&&c[f[x]][1]!=x;
    }
    void zhuan(int x)
    {
        int y=f[x],z=f[y],l=c[y][0]!=x,r=l^1;
        if(!srt(y))
            c[z][c[z][0]!=y]=x;
        f[x]=z;
        c[y][l]=c[x][r];
        f[c[x][r]]=y;
        c[x][r]=y;
        f[y]=x;
        ud(y);
    }
    void splay(int x)
    {
        ppd(x);
        while(!srt(x))
        {
            int y=f[x],z=f[y];
            if(!srt(y))
            {
                if((c[y][0]==x)^(c[z][0]==y))
                    zhuan(x);
                else
                    zhuan(y);
            }
            zhuan(x);
        }
        ud(x);
    }
    int zhao(int &x,int k)
    {
        while(1)
        {
            pd(x);
            if(k<=si[c[x][0]]) 
                x=c[x][0];
            else if(k==si[c[x][0]]+1)
                return x;
            else 
                k-=(si[c[x][0]]+1),x=c[x][1];
        }
    }
}v;
struct LCT
{
    int si[N],c[N][2],f[N],rt[N];
    bool re[N];
    void rev(int x)
    {
        swap(c[x][0],c[x][1]);
        re[x]^=1;
    }
    void ud(int x)
    {
        si[x]=si[c[x][0]]+si[c[x][1]]+1;
    }
    void pd(int x)
    {
        if(re[x]) 
        {
            rev(c[x][0]);
            rev(c[x][1]);
            re[x]=0;
        }
    }
    int ppd(int x)
    {
        int anc=srt(x)?x:ppd(f[x]);
        pd(x);
        return anc;
    }
    bool srt(int x)
    {
        return c[f[x]][0]!=x&&c[f[x]][1]!=x;
    }
    void zhuan(int x)
    {
        int y=f[x],z=f[y],l=c[y][0]!=x,r=l^1;
        if(!srt(y))
            c[z][c[z][0]!=y]=x;
        f[x]=z;
        c[y][l]=c[x][r];
        f[c[x][r]]=y;
        c[x][r]=y;
        f[y]=x;
        ud(y);
    }
    void splay(int x)
    {
        rt[x]=rt[ppd(x)];
        while(!srt(x))
        {cerr<<x<<endl;
            int y=f[x],z=f[y];
            if(!srt(y))
            {
                if((c[y][0]==x)^(c[z][0]==y))
                    zhuan(x);
                else
                    zhuan(y);
            }
            zhuan(x);
        }
        ud(x);
    }
    void acc(int x)
    {cerr<<"ACC"<<endl;
        for(int y=0;x;y=x,x=f[x])
        {//cerr<<x<<" "<<y<<endl;
            splay(x);//cerr<<"accoksplay"<<endl;
            int x2=v.fdrt(rt[x]),y2=v.fdrt(rt[y]);//cerr<<"accokflrt"<<endl;
            if(!y)
                y2=0;
            v.zhao(x2,si[c[x][0]]+1);
            v.splay(x2);
            rt[x]=x2;
            rt[c[x][1]]=v.c[x2][1];
            v.f[v.c[x2][1]]=0;
            v.c[x2][1]=y2;
            v.f[y2]=x2;
            v.ud(x2);
            c[x][1]=y;
            ud(x);
        }
    }
    void mkrt(int x)
    {
        acc(x);//cerr<<"OKACC"<<endl;
        splay(x);//cerr<<"oksplay"<<endl;
        rev(x);
        v.rev(rt[x]);
    }
    void dfs(int u,int fa)
    {
        rt[u]=u,si[u]=1,f[u]=fa;
        v.init(u,0);
        for(int i=h[u];i;i=e[i].ne)
            if(e[i].to!=fa)
                dfs(e[i].to,u);
    }
}w;
int main()
{
    n=read(),q=read(),root=read();
    for(int i=1;i<n;i++)
    {
        int x=read(),y=read();
        add(x,y);
        add(y,x);
    }  
    w.dfs(root,0);
    while(q--)
    {
        scanf("%s",c);
        int x=read(),y=read();//cerr<<"read"<<endl;
        w.mkrt(x);//cerr<<"mkrt"<<endl;
        w.acc(y);//cerr<<"acc"<<endl;
        int vy=v.fdrt(w.rt[y]);
        if(c[2]=='c')
        {
            int z=read();
            v.add(vy,z);
        }
        else if(c[2]=='m')
            printf("%lld\n",v.sum[vy]);
        else if(c[2]=='j')
            printf("%lld\n",v.mx[vy]);
        else if(c[2]=='n')
            printf("%lld\n",v.mn[vy]);
        else
            v.rev(vy);
    }
    return 0;
}
/*
5 8 1
1 2
2 3
3 4
4 5
Sum 2 4
Increase 3 5 3
Minor 1 4
Sum 4 5
Invert 1 3
Major 1 2
Increase 1 5 2
Sum 1 5
*/

转载于:https://www.cnblogs.com/lokiii/p/8619797.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值