图论算法

五一时候随便翻书看到了一些关于离散数学图论的模板和算法,大概总结了一下,图论要比数论稍简单一点点。。。

一、
  点用边连起来就叫做图,严格意义上讲,图是一种数据结构,定义为:graph=(V,E)。V是一个非空有限集合,代表顶点(结点),E代表边的集合。
二、图的一些定义和概念
(a)有向图:图的边有方向,只能按箭头方向从一点到另一点。(a)就是一个有向图。
(b)无向图:图的边没有方向,可以双向。(b)就是一个无向图。
结点的度:无向图中与结点相连的边的数目,称为结点的度。
结点的入度:在有向图中,以这个结点为终点的有向边的数目。结点的出度:在有向图中,以这个结点为起点的有向边的数目。   

 

                              

权值:边的“费用”,可以形象地理解为边的长度。
连通:如果图中结点U,V之间存在一条从U通过若干条边、点到达V的通路,则称U、V 是连通的。
回路:起点和终点相同的路径,称为回路,或“环”。
完全图:一个n 阶的完全无向图含有n*(n-1)/2 条边;一个n 阶的完全有向图含有n*(n-1)条边;

    稠密图:一个边数接近完全图的图。
    稀疏图:一个边数远远少于完全图的图。
    
强连通分量:有向图中任意两点都连通的最大子图。右图中,1-2-5构成一个强连通分量。特殊地,单个点也算一个强连通分量,所以右图有三个强连通分量:1-2-5,4,3。

  • 图的存储结构

1.二维数组邻接矩阵存储
定义int  G[101][101];
G[i][j]的值,表示从点i到点j的边的权值,定义如下:

                0  1  1  1                     0  1  1                    
G(A)=   1  0  1  1    G(B)=    0  0  1                    
            1  1  0  0                     0  1  0  
            1  1  0  0        

 

 

 

  • 图的遍历
void dfs(int i)
{
    visited[i] = true;
    for(int j = 1;j <= num[i] ; j++)
    if(!visited[g[i][j]])
    dfs(g[i][j]);
}
int main()
{
    memset(visited,false,sizeof(visited));
    for(int i=1 ; i<=n ;i++)
    
    if(!visited[i])
    dfs(i);
    
}

 

可以看到上面这段遍历整张图的代码中主函数部分,先把图中各点初始化false,每次遍历时先判断两点是否联通将遍历过的点修改为true。

  • 欧拉回路

如果一个图存在一笔画,则一笔画的路径叫做欧拉路,如果最后又回到起点,那这个路径叫做欧拉回路。
定理1:存在欧拉路的条件:图是连通的,有且只有2个奇点。
定理2:存在欧拉回路的条件:图是连通的,有0个奇点。
根据一笔画的两个定理,如果寻找欧拉回路,对任意一个点执行深度优先遍历;找欧拉路,则对一个奇点执行DFS,时间复杂度为O(m+n),m为边数,n是点数。

样例输入:第一行n,m,有n个点,m条边,以下m行描述每条边连接的两点。
    5 5
    1 2
    2 3
    3 4
    4 5
    5 1
样例输出:欧拉路或欧拉回路
    1 5 4 3 2 1

这种条件在纸上画出大概的一个图就能发现点和线之间的关联。
这也是欧拉回路一个模板

#include<iostream>
using namespace std;
#define maxn 100
int g[maxn][maxn];               //储存矩阵
int du[maxn];                    //记录一个点连了几条边
int circuit[maxn];               //记录欧拉回路
int n,e,circuitpos,i,j,x,y,start;
void find_circuit(int i)         //记录其中一个点的欧拉回路
{
    int j;
    for(j=1;j<=n;j++)
    if(g[i][j]==1)
    {
        g[i][j] = g[j][i] = 0;           //记录两个联通点后把他们的之间路径清空
        find_circuit(j);
    }
    circuit[++circuitpos] = i;
}
int main()
{
    memset(g,0,sizeif(g));
    cin>>n>>e;
    for (int i=1 ;i<=e ;i++)
    {
        cin>>x>>y;
        g[x][y] = g[y][x] =1;
        du[x]++;
        du[y]++;
    }
    start = 1;
    for(i =1 ; i<=n ;i++)
    if(du[i]%2==1)                      //偶数点无法判断此路径是否被记录,因此从奇数点
开始找,找到奇数点后代入函数做记录。 start
= i; circuitpos = 0; find_circuit(start); for(i=1;i<=circuitpos;i++) cout<<circuit[i]<<endl; }

 

  • 哈密尔顿环

  欧拉回路是指不重复地走过所有路径的回路,而哈密尔顿环是指不重复地走过所有的点,并且最后还能回到起点的回路。

#include<iostream>
#include<cstring>
using namespace std;
int start,length,x,n; 
bool visited[101],v1[101];
int ans[101], num[101];
int g[101][101];
void print()
{    int i;
     for (i = 1; i <= length; i++)
         cout << ' ' << ans[i];
     cout << endl;    
}
void dfs(int last,int i)                      //图用数组模拟邻接表存储,访问点i,last表示上次访问的点
{
    visited[i] = true;                        //标记为已经访问过
    v1[i] = true;                             //标记为已在一张图中出现过
    ans[++length] = i;                                     
    for (int j = 1; j <= num[i]; j++)  
  { 
    if (g[i][j]==x&&g[i][j]!=last)          //回到起点,构成哈密尔顿环
          {
          ans[++length] = g[i][j];  
          print();                          
          length--;
          break;
          } 
     if (!visited[g[i][j]]) dfs(i,g[i][j]);   //遍历与i相关联的所有未访问过的顶点
    }
    length--;
    visited[i] = false;                       
} 
int main()
{
    memset(visited,false,sizeof(visited));
    memset(v1,false,sizeof(v1));
    for (x = 1; x <= n; x++)
       //每一个点都作为起点尝试访问,因为不是从任何一点开始都能找过整个图的
       if (!v1[x])              //如果点x不在之前曾经被访问过的图里。
        {
            length = 0;        
            dfs(x);
        }
    return 0;
}
  • 最短路径

 如下图所示,我们把边带有权值的图称为带权图。边的权值可以理解为两点之间的距离。一张图中任意两点间会有不同的路径相连。最短路径就是指连接两点的这些路径中最短的一条。

 

 1.弗洛依德l算法 O(N3)
  简称Floyed(弗洛伊德)算法,是最简单的最短路径算法,可以计算图中任意两点间的最短路径。Floyed的时间复杂度是O (N3),适用于出现负边权的情况。
算法描述:
       初始化:点u、v如果有边相连,则dis[u][v]=w[u][v]。
  如果不相连则dis[u][v]=0x7fffffff
For (k = 1; k <= n; k++)
    For (i = 1; i <= n; i++)
     For (j = 1; j <= n; j++)
         If (dis[i][j] >dis[i][k] + dis[k][j])
             dis[i][j] = dis[i][k] + dis[k][j];
        算法结束:dis[i][j]得出的就是从i到j的最短路径。

主体代码是很好理解的,遍历所有点,i,j两点间的距离比i到k,k到j的距离长,就更新i j两点间的距离。

 

最短路径问题
【问题描述】
  平面上有n个点(n<=100),每个点的坐标均在-10000~10000之间。其中的一些点之间有连线。
  若有连线,则表示可从一个点到达另一个点,即两点间有通路,通路的距离为两点间的直线距离。现在的
  任务是找出从一点到另一点之间的最短路径。
【输入格式】
  输入文件为short.in,共n+m+3行,其中:
  第一行为整数n。
  第2行到第n+1行(共n行) ,每行两个整数x和y,描述了一个点的坐标。
  第n+2行为一个整数m,表示图中连线的个数。
  此后的m 行,每行描述一条连线,由两个整数i和j组成,表示第i个点和第j个点之间有连线。
  最后一行:两个整数s和t,分别表示源点和目标点。
【输出格式】
  输出文件为short.out,仅一行,一个实数(保留两位小数),表示从s到t的最短路径长度

 

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
using namespace std;
int a[101][3];
double f[101][101];
int n,i,j,k,x,y,m,s,e;
int main()
{
    cin >> n;
    for (i = 1; i <= n; i++)
        cin >> a[i][1] >> a[i][2];
    cin >> m;
    memset(f,0x7f,sizeof(f));                    //初始化f数组为最大值
    for (i = 1; i <= m; i++)                           //预处理出x、y间距离
    {
      cin >> x >> y;
      f[y][x] = f[x][y] = sqrt(pow(double(a[x][1]-a[y][1]),2)+pow(double(a[x][2]-a[y][2]),2));
                      //求(x1,y1),(x2,y2)距离 
    }
    cin >> s >> e;
    for (k = 1; k <= n; k++)                     //floyed 最短路算法
       for (i = 1; i <= n; i++)
          for (j = 1; j <= n; j++)
             if ((i != j) && (i != k) && (j != k) && (f[i][k]+f[k][j] < f[i][j]))
                 f[i][j] = f[i][k] + f[k][j];
    printf("%.2lf\n",f[s][e]);
    return 0;
}

2.Dijkstra算法O (N2)
用来计算从一个点到其他所有点的最短路径的算法,是一种单源最短路径算法。也就是说,只能计算起点只有一个的情况。
Dijkstra的时间复杂度是O (N2),它不能处理存在负边权的情况。dijkstra算法优点在于时间复杂度比弗洛伊德低一个量级,但是不能处理负权值。
算法描述:
       设起点为s,dis[v]表示从s到v的最短路径,pre[v]为v的前驱节点,用来输出路径。
       a)初始化:dis[v]=∞(v≠s); dis[s]=0; pre[s]=0;
       b)For (i = 1; i <= n ; i++)
            1.在没有被访问过的点中找一个顶点u使得dis[u]是最小的。
            2.u标记为已确定最短路径
            3.For 与u相连的每个未确定最短路径的顶点v
              if  (dis[u]+w[u][v] < dis[v])
               {
                  dis[v] = dis[u] + w[u][v];
                  pre[v] = u;
               }
        c)算法结束:dis[v]为s到v的最短距离;pre[v]为v的前驱节点,用来输出路径。

    从起点到一个点的最短路径一定会经过至少一个“中转点”(例如下图1到5的最短路径,中转点是2。特殊地,我们认为起点1也是一个“中转点”)。显而易见,如果我们想求出起点到一个点的最短路径,那我们必然要先求出中转点的最短路径(例如我们必须先求出点2 的最短路径后,才能求出从起点到5的最短路径)。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int a[101][3];
double c[101];
bool b[101];
double f[101][101];
int n,i,j,k,x,y,m,s,e;
double minl;
double maxx = 1e30;
int main()
{
    cin >> n;
    for (i = 1; i <= n; i++)
      cin >> a[i][1] >> a[i][2];
    for (i = 1; i <= n; i++)
      for(j = 1; j <= n; j++)
        f[i][j] = maxx;                         //f数组初始化最大值
    cin >> m;
    for (i = 1; i <= m; i++)                    //预处理x.y间距离f[x][y]
    {
        cin >> x >> y;
        f[x][y] = f[y][x] = sqrt(pow(double(a[x][1]-a[y][1]),2)+pow(double(a[x][2]-a[y][2]),2));
    }
   cin >> s >> e;
    for (i = 1; i <= n; i++) 
      c[i] = f[s][i];
    memset(b,false,sizeof(b));      //dijkstra 最短路
    b[s] = true;
    c[s] = 0; 
    for (i = 1; i <= n-1; i++)
    {
        minl = maxx;
        k = 0;
        for (j = 1; j <= n; j++)     //查找可以更新的点
           if ((! b[j]) && (c[j] < minl))
            {
                minl = c[j];
                k = j;
            }
        if (k == 0) break;
        b[k] = true;
        for (j = 1; j <= n; j++)
           if (c[k] + f[k][j] < c[j]) 
             c[j] = c[k] + f[k][j];
    }    
   printf("%.2lf\n",c[e]);
   return 0;
}

 

转载于:https://www.cnblogs.com/sylover/p/10820630.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值