uoj#38. 【清华集训2014】奇数国【欧拉函数】

   number⋅x+product⋅y=1  有整数x,y解的条件是gcd(number, product) == 1.

  product用线段树维护一下,然后现学了个欧拉函数。

  可以这样假如x = p1^a1 * p2^a2 * p3^a3 * ... * pn^an,那么phi(x) = (p1 - 1) * p1^(a1 - 1) + (p2 - 1) * p2^(a2 - 1) + (p3 - 1) * p3^(a3 - 1) + ... + (pn - 1) * pn^(an - 1).

  速度奇慢,明早优化。。。

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 #define rep(i, a, b) for (int i = a; i <= b; i++)
 4 #define drep(i, a, b) for (int i = a; i >= b; i--)
 5 #define REP(i, a, b) for (int i = a; i < b; i++)
 6 #define mp make_pair
 7 #define pb push_back
 8 #define clr(x) memset(x, 0, sizeof(x))
 9 #define xx first
10 #define yy second
11 int pri[] = { 0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281 };
12 
13 const int maxn = 100005, mod = 19961993;
14 int cnt[maxn << 2][61];
15 void Push_up(int o) { rep(i, 1, 60) cnt[o][i] = cnt[o << 1][i] + cnt[o << 1 | 1][i]; }
16 void fac(int o, int v) {
17     rep(i, 1, 60) cnt[o][i] = 0;
18     while (v != 1) {
19         for (int i = 1; i <= 60 && v != 1; i++)
20             while (v != 1 && v % pri[i] == 0) cnt[o][i]++, v /= pri[i];
21     }
22 }
23 void update(int o, int l, int r, int x, int v) {
24     if (l == r) {
25         fac(o, v);
26         return;
27     }
28     int mid = l + r >> 1;
29     if (x <= mid) update(o << 1, l, mid, x, v);
30     else update(o << 1 | 1, mid + 1, r, x, v);
31     Push_up(o);
32 }
33 int ret[61];
34 void query(int o, int l, int r, int ql, int qr) {
35     if (ql <= l && r <= qr) {
36         rep(i, 1, 60) ret[i] += cnt[o][i];
37         return;
38     }
39     int mid = l + r >> 1;
40     if (ql <= mid) query(o << 1, l, mid, ql, qr);
41     if (qr > mid) query(o << 1 | 1, mid + 1, r, ql, qr);
42 }
43 int POW(int base, int num) {
44     long long ha = 1;
45     long long b = base;
46     while (num) {
47         if (num & 1) ha *= b, ha %= mod;
48         b *= b;
49         b %= mod;
50         num >>= 1;
51     }
52     return ha;
53 }
54 int main() {
55     int n; scanf("%d", &n);
56     rep(i, 1, 100000) update(1, 1, 100000, i, 3);
57     while (n--) {
58         int op, x, y; scanf("%d%d%d", &op, &x, &y);
59         if (op == 1) update(1, 1, 100000, x, y);
60         else {
61             memset(ret, 0, sizeof(ret));
62             query(1, 1, 100000, x, y);
63             long long ans = 1;
64             rep(i, 1, 60) {
65                 if (!ret[i]) continue;
66                 ans *= POW(pri[i], ret[i] - 1);
67                 ans %= mod;
68                 ans *= pri[i] - 1;
69                 ans %= mod;
70             }
71             printf("%lld\n", ans);
72         }
73     }
74 }
View Code

 

转载于:https://www.cnblogs.com/y7070/p/5084534.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值