地理信息系统 - ArcGIS - 高/低聚类分析工具(High/Low Clustering ---Getis-Ord General G)

本文介绍了ArcGIS中的空间统计工具,特别是高/低聚类分析(Getis-Ord General G),用于检测空间数据中高值和低值的聚类现象。空间统计通过度量空间自相关性和分布模式,帮助理解和揭示地理空间数据的特征。平均最近邻工具、空间自相关工具(Moran's I)和增量空间自相关工具也是空间统计分析的重要工具,分别用于评估空间聚类、度量全局空间自相关和发现聚类距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前段时间在学习空间统计相关的知识,于是把ArcGIS里Spatial Statistics工具箱里的工具好好研究了一遍,同时也整理了一些笔记上传分享。这一篇先聊一些基础概念,工具介绍篇随后上传。

  空间统计研究起步于上个世纪70年代,空间统计其核心就是认识与地理位置相关的数据间的空间依赖、空间关联等关系,通过空间位置建立数据间的统 计关系。空间统计学依赖于tablor地理学第一定律,即空间上越临近的事物拥有越强的相似程度;和空间异质性,即空间位置差异造成的行为不确定现象。例 如要度量犯罪率与教育程度的关系,不同地区 (文教区、贫困区)可能不一样。

       利用GIS进行空间统计分析最早可追溯到1854年的伦敦大霍乱(黑死病)。当时盛行的理论是“空气传染”,而不是现在的病菌传染。John Snow 医生开始也相信空气传染学说,但证据使他不得不转向病菌学说。他通过观察霍乱病例在空间上分布的特征,找到了其空间上聚集的地方,进一步找到了致病的水 井。利用空间统计可帮助我们发现、判断并证实事物在空间上分布的规律和特征,从而对研究进行辅助决策。

 

几个空间统计基本概念

  • 自相关指数

Moran指数和Geary系数是两个用来度量空间自相关的全局指标。Moran指数反映的是空间邻接或空间邻近的区域单元属性值的相似程度,Geary 系数与Moran指数存在负相关关系。 

Moran指数I的取值一般在[-1,1]之间,小于0表示负相关,等于0表示不相关,大于0表示正相关;

Geary系数C的取值一般在[0,2]之间,大于1表示负相关,等于1表示不相关,而小于1表示正相关;

 

  • 回归分析

回归分析(regression analysis)是确定两个或多个变量间相互依赖的定量关系的一种统计分析方法。按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

 

  •  欧几里得距离&曼哈顿距离

欧几里得距离即两点之间平面直线距离,如果两点的坐标分别为(x1,y1)和(x2,y2),则欧几里得距离计算公式为:

而曼哈顿距离又称为出租车距离,就是在欧几里德空间的固定直角坐标系上两点所形成的线段对轴产生的投影的距离总和,计算公式为:

                     Distance=|x1-x2|+|y1-y2|

  • 空间权重矩阵

通常定义一个二元对称空间权重矩阵W,来表达n个位置的空间区域的邻近关系,其形式如下:

                  

 Wij表示区域ij的临近关系,它可以根据邻接标准或距离标准来度量。  

常用的最简单简单的二进制邻接矩阵

          

 常用的基于距离的二进制空间权重矩阵

            

  • Z Score和P

很多空间统计里的工具都会返回Z分数和P值,P值是统计学中所谓犯“第一类错误”的可能性,指零假设正确,而我们错误的拒绝了零假设的可能性。Z分数也代表拒绝零假设的可能性,也就是说,如果P值越小,Z分数的绝对值越大,就可以越放心的拒绝零假设。

_____________________________________________

ArcGIS 统计工具介绍

随着GIS在各个领域应用的不

### 如何在 ArcGIS 中执行双变量高低聚类分析 #### 准备工作 为了进行双变量高低聚类分析,在ArcGIS中需要准备两个具有数值属性的数据层。这些数据可以来自不同的源,但必须能够叠加在同一地理区域内。 #### 数据预处理 确保两组数据都处于相同的坐标系下,并且已经过必要的清洗和标准化过程。如果其中一个或两个数据集是以矢量格式存在的,则可能需要用Spatial Analyst扩展模块将其转换成栅格格式以便于后续操作[^2]。 #### 使用/低聚分析工具 ArcGIS提供了`High/Low Clustering (Getis-Ord General G)` 工具来进行单变量的高低检测。然而对于双变量的情况,虽然没有专门针对这种情况设计好的现成工具,但是可以通过一些技巧实现: 1. 创建一个新的字段用来表示组合后的权重值。这一步骤涉及计算每一对对应位置处来自不同变量的影响程度之乘积或其他形式的综合衡量标准; 2. 应用上述提到的方法生成新的加权结果作为输入给 Getis-Ord General G 进行一次性的整体评估; 3. 或者分别对各自原始变量应用该算法之后再比较两者之间模式的一致性和差异性。 #### 结果解释 当完成以上步骤后,将会得到一系列统计指标以及可视化图表展示哪些区域显示出显著的相关聚集特性——即某些地方既表现出水平又呈现出另一个维度上也较的情况; 反过来亦然。这种型的洞察有助于揭示复杂的社会经济现象背后隐藏的空间结构关系[^4]。 ```python import arcpy from arcpy import env env.workspace = "C:/data" # 假设我们有两个要素 'population' 和 'income' arcpy.AddField_management('population', 'weight_field', 'FLOAT') arcpy.CalculateField_management('population', 'weight_field', '!POPULATION! * !INCOME!', 'PYTHON_9.3') # 接下来使用 High Low Clustering Tool 对新创建的 weight_field 字段做分析 arcpy.HighLowClustering_stats('population', 'weight_field', 'OUTPUT_FEATURES') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值