BZOJ 2159: Crash 的文明世界(树形dp+第二类斯特林数+组合数)

题意

给定一棵 \(n\) 个点的树和一个常数 \(k\) , 对于每个 \(i\) , 求
\[\displaystyle S(i) = \sum _{j=1} ^ {n} \mathrm{dist}(i, j)^k\]

\(n ≤ 50000, k ≤ 150\)

题解

先划划那个 \(S(i)\) 的式子

我们需要知道一个化 \(x^n(n \ge 0)\) 的东西qwq

\[\displaystyle x^n=\sum_{k=0}^{n}\begin{Bmatrix} n \\ k \end{Bmatrix} x^{\underline k}=\sum _{k=0}^{n}(-1)^k \begin{Bmatrix} n \\ k \end{Bmatrix} x^{\overline k}\]

这个式子十分的有用,可以转化很多幂指数的东西为斯特林数。

\[\displaystyle S(i)=\sum _{j=1}^{n}\sum_{l=0}^{k}\begin{Bmatrix} k \\ l \end{Bmatrix} \mathrm{dist}(i,j)^{\underline l}\]

然后换个位置

\[\displaystyle S(i)=\sum_{l=0}^{k}\begin{Bmatrix} k \\ l \end{Bmatrix}\sum _{j=1}^{n} \mathrm{dist}(i,j)^{\underline l}\]

然后用一下组合数的一个定义式子:

\[\displaystyle \binom n k = \frac{n!}{(n-k)!k!}=\frac{n^{\underline k}}{k!}\]

\[\therefore \displaystyle n^{\underline k}=\binom n k k!\]

这也可以导出下降幂了

\[\displaystyle S(i)=\sum_{l=0}^{k}\begin{Bmatrix} k \\ l \end{Bmatrix} l!\sum _{j=1}^{n} \binom {\mathrm{dist}(i,j)} l\]

前面那一部分显然是稳定不变的,我们就可以去维护第二部分啦

\[\displaystyle dp[i][l]=\sum _{j=1}^{n} \binom {\mathrm{dist}(i,j)} l\]

由于是组合数我们就可以直接套用它的一个递推式来转移了(因为转移的时候,所有 \(\mathrm{dist}(i,j)\) 同增减 \(1\)

\[\displaystyle \binom n k = \binom {n-1} {k} + \binom {n-1} {k-1}\]

同样的,就有 \(dp[i][l]=dp[j][l]+dp[j][l-1]\) 此处 \(j\)\(i\) 的一个儿子。(这个递推式用来转移真的是巧妙啊qwq)

然后我们要算两个 \(dp\) 值,一个 \(f_{i,l}\) 统计子树的,一个 \(g_{i,l}\) 统计子树外的。

统计子树外的时候,要先算父亲那过来的贡献,然后再算兄弟的贡献。

算兄弟的贡献可以用父亲贡献减掉自己的贡献(见代码中分步写的 \(g_{i,j}\) 的转移) 而且要先转移,再遍历

所以最后 \(O(nk)\) 个状态, \(O(1)\) 的转移,总复杂度就是 \(\Theta(nk)\) .

那个解压输入直接拷贝了 Hany01 大佬的 qwq不会写

代码

/**************************************************************
    Problem: 2159
    User: zjp_shadow
    Language: C++
    Result: Accepted
    Time:4156 ms
    Memory:67680 kb
****************************************************************/
 
#include <bits/stdc++.h>
#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
using namespace std;
 
inline bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
inline bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;}
 
inline int read() {
    int x = 0, fh = 1; char ch = getchar();
    for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
    for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
    return x * fh;
}
 
void File() {
#ifdef zjp_shadow
    freopen ("2159.in", "r", stdin);
    freopen ("2159.out", "w", stdout);
#endif
}
 
const int Mod = 10007, N = 50010;
 
vector<int> G[N];
 
int n, k, S[160][160];
int fac[160];
 
void Init(int maxn) {
    S[0][0] = 1; For (i, 1, maxn) { S[i][1] = 1; For (j, 1, i) S[i][j] = (j * S[i - 1][j] % Mod + S[i - 1][j - 1]) % Mod; }
    fac[0] = fac[1] = 1; For (i, 2, maxn) fac[i] = fac[i - 1] * i % Mod;
}
 
int f[N][160], sz[N];
 
void Dfs1(int u, int fa) {
    f[u][0] = 1; sz[u] = 1;
    For (i, 0, G[u].size() - 1) {
        int v = G[u][i]; if (v == fa) continue ;
        Dfs1(v, u); sz[u] += sz[v];
        (f[u][0] += f[v][0]) %= Mod;
        For (j, 1, k) (f[u][j] += f[v][j] + f[v][j - 1]) %= Mod;
    }
}
 
int g[N][160];
 
void Dfs2(int u, int fa) {
    g[u][0] = (n - sz[u]) % Mod;
    if (fa) {
        For (i, 1, k) {
            g[u][i] = g[fa][i] + g[fa][i - 1];
            g[u][i] += f[fa][i] - (f[u][i] + f[u][i - 1]);
            g[u][i] += f[fa][i - 1] - (f[u][i - 1] + (i > 1 ? f[u][i - 2] : 0));
            g[u][i] = (g[u][i] % Mod + Mod) % Mod;
        }
    }
    For (i, 0, G[u].size() - 1) { int v = G[u][i]; if (v == fa) continue ; Dfs2(v, u); }
}
 
int ans[N];
 
inline void Input_Umcompress()
{
    register int l, now, a, b, q, tmp, u, v;
    n = read(), k = read(), l = read(), now = read(), a = read(), b = read(), q = read();
    For(i, 1, n - 1)
        now = (now * a + b) % q, tmp = i < l ? i : l,
        u = i - now % tmp, v = i + 1, G[u].push_back(v), G[v].push_back(u);
}
 
int main () {
    File(); Init(150);
    Input_Umcompress();
    /*n = read(); k = read();
    For (i, 1, n - 1) {
        int u = read(), v = read();
        G[u].push_back(v);
        G[v].push_back(u);
    }*/
 
    Dfs1(1, 0); Dfs2(1, 0);
     
    For (i, 1, n) {
        For (l, 0, k) 
            (ans[i] += S[k][l] * fac[l] % Mod * (f[i][l] + g[i][l]) % Mod) %= Mod;
        printf ("%d\n", ans[i]);
    }
 
    return 0;
}

转载于:https://www.cnblogs.com/zjp-shadow/p/8641428.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值