bzoj 2159: Crash 的文明世界 树形dp+第二类斯特林数+排列组合

题意

给出一棵树和一个常数m,对于每一个i(1<=i<=n),求出 nj=1dist(i,j)m ∑ j = 1 n d i s t ( i , j ) m
n<=50000,k<=150

分析

首先有一个结论,就是 xn=ni=1S(n,i)F(x,i) x n = ∑ i = 1 n S ( n , i ) ∗ F ( x , i )
其中 S(n,i)S(n,i)=S(n1,i)i+S(n1,i1)F(x,i)F(x,i)=x!(xi)! S ( n , i ) 为 第 二 类 斯 特 林 数 , S ( n , i ) = S ( n − 1 , i ) ∗ i + S ( n − 1 , i − 1 ) , F ( x , i ) 表 示 排 列 , F ( x , i ) = x ! ( x − i ) !
证明的话其实很简单,左边的组合意义就是把n个不同的球放到x个不同的盒子中的方案数;右边的话就相当于枚举了这n个球要放到多少个盒子里。

有了这个结论的话,题目就变成了求

j=1nk=1mS(m,k)F(dist(i,j),k)=k=1mS(m,k)j=1nF(dist(i,j),k) ∑ j = 1 n ∑ k = 1 m S ( m , k ) ∗ F ( d i s t ( i , j ) , k ) = ∑ k = 1 m S ( m , k ) ∑ j = 1 n F ( d i s t ( i , j ) , k )

但我们发现这样还是不好求。注意到 F(x,i)=C(x,i)/i! F ( x , i ) = C ( x , i ) / i ! 那么式子就变成了
k=1mS(m,k)k!j=1nC(dist(i,j),k) ∑ k = 1 m S ( m , k ) ∗ k ! ∗ ∑ j = 1 n C ( d i s t ( i , j ) , k )

再用上pascal定理 C(n,m)=C(n1,m)+C(n1,m1) C ( n , m ) = C ( n − 1 , m ) + C ( n − 1 , m − 1 ) 我们就可以通过树形dp来求得后面sigma的那部分。
设down[x,i]表示当上面的k=i时x的子树对x的贡献,up[x,i]表示除了x子树外的节点对x的贡献。
设v为x的儿子,容易推出
down[x][k]=down[x][k]+down[v][k]+down[v][k-1]
up[x][k]=up[x][k]+up[fa][k]+up[fa][k-1]
up[x][k]=up[x][k]+down[fa][k]+down[fa][k-1]
up[x][k]=up[x][k]-down[x][k]-down[x][k-1]
up[x][k]=up[x][k]-down[x][k-1]-down[x][k-2]
up的最后两个递推式减去的分别是x的子树对up[fa,k]和up[fa,k-1]的贡献。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;

typedef long long LL;

const int N=100005;
const int M=205;
const int MOD=10007;

int n,m,cnt,last[N],up[N][M],down[N][M],L,now,A,B,Q,s[M][M],jc[M];
struct edge{int to,next;}e[N*2];

void addedge(int u,int v)
{
    e[++cnt].to=v;e[cnt].next=last[u];last[u]=cnt;
    e[++cnt].to=u;e[cnt].next=last[v];last[v]=cnt;
}

void dfs1(int x,int fa)
{
    down[x][0]=1;
    for (int i=last[x];i;i=e[i].next)
    {
        int v=e[i].to;
        if (v==fa) continue;
        dfs1(e[i].to,x);
        down[x][0]+=down[v][0];
        for (int k=1;k<=m;k++) down[x][k]=(down[x][k]+down[v][k]+down[v][k-1])%MOD;
    }
}

void dfs2(int x,int fa)
{
    if (fa)
    {
        up[x][0]=n-down[x][0];
        for (int k=1;k<=m;k++)
        {
            up[x][k]=(up[x][k]+up[fa][k]+up[fa][k-1])%MOD;
            up[x][k]=(up[x][k]+down[fa][k]+down[fa][k-1])%MOD;
            up[x][k]=(up[x][k]-down[x][k]-down[x][k-1])%MOD;
            up[x][k]=(up[x][k]-down[x][k-1])%MOD;
            if (k>1) up[x][k]=(up[x][k]-down[x][k-2])%MOD;
            up[x][k]=(up[x][k]+MOD)%MOD;
        }
    }
    for (int i=last[x];i;i=e[i].next)
        if (e[i].to!=fa) dfs2(e[i].to,x);
}

int main()
{
    scanf("%d%d%d%d%d%d%d",&n,&m,&L,&now,&A,&B,&Q);
    for (int i=1;i<n;i++){
        now=(now*A+B)%Q;
        int tmp=i<L?i:L;
        int x=i-now%tmp,y=i+1;
        addedge(x,y);
    }
    /*scanf("%d%d",&n,&m);
    for (int i=1;i<n;i++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        addedge(x,y);
    }*/
    s[0][0]=jc[0]=1;
    for (int i=1;i<=m;i++)
    {
        jc[i]=jc[i-1]*i%MOD;
        for (int j=1;j<=i;j++) s[i][j]=(s[i-1][j]*j%MOD+s[i-1][j-1])%MOD;
    }
    dfs1(1,0);
    dfs2(1,0);
    for (int i=1;i<=n;i++)
    {
        int ans=0;
        for (int k=1;k<=m;k++) ans=(ans+(LL)s[m][k]*jc[k]*(up[i][k]+down[i][k])%MOD)%MOD;
        printf("%d\n",ans);
    }
    return 0;
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值