基于stm32单片机外文文献_单片机外文文献

本文提出了一种用于多核微控制器的灵活且参数化架构,旨在针对中等复杂度的嵌入式应用。通过FPGA实现了原型,能够支持多达七个CPU的应用。该架构有助于在开发阶段选择资源,提供了一种替代传统固定功能微控制器的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A Flexible and Parameterized Architecture

for Multicore Microcontroller

Cesar Giacomini Penteado

University of Sao Paulo (LSITEC), Sao Paulo, Brazil

Email: cesargiacomini@gmail.com

Sergio Takeo Kofuji and Edward David Moreno

University of Sao Paulo(POLI, Sao Paulo, Brazil) and Federal University of Sergipe (DCOMP-UFS), Aracaju, Brazil

Email: kofuji@lsi.usp.br, edwdavid@gmail.com

Abstract

—This paper presents the concept and preliminary

tests

in

FPGA

of

a

specific

architecture

for

a

flexible

multicore

microcontroller.

It

is

aimed

to

intermediate

complexity

embedded

applications.

A

previous

exact

characterize

of

the

microcontroller

model

and

its

target

applications is a costly-time task,

and it depends

mostly on

experience

of

the

engineers

and

programmers.

The

proposed

architecture

can

aid

the

development

of

new

applications, for selecting resources during the development

phase.

We

have

designed

a

prototype

in

FPGA

which

is

working and running applications with up seven CPUs.

Index

Terms

Multicore,

Microcontroller,

Embedded,

FPGA, soft processor, VHDL

I.

I

NTRODUCTION

Advances in researches and digital systems technology

have

enabled

the

joint

of

computational

power

from

several

intercommunicative

processors

in

the

same

package.

The

multicore

concept

arises,

a

processor

compounded

by

identical

and

functional

copies

of

a

processor or several distinct functional units [1].

The

Multicore

microcontrollers

concept

appears

with

the

joint

of

several

processors

in

a

same

chip,

and

each

processor

supported

by

some

peripherals.

Multicore

microcontrollers start being available in the market.

There

are

several

microcontroller

chip

vendors

and

each

one

of

these

avail

a

wide

variety

of

models

with

each

time

more

specific

characteristics.

Thus,

aiming

to

achieve

the

different

demands

by

project

requirements,

each

vendor avails several product lines, and then,

from

each of these lines, several microcontroller models. These

models vary from simple MCUs with 8bit processors and

few simple peripherals to sophisticated MCUs with 32bit

processors and several robust peripherals.

In between the simple MCUs and robust MCUs there

is a great variety of microcontroller models with different

peripheral

numbers

and

peripheral

settings

around

the

CPU.

Then

these

microcontrollers

are

classified,

in

this

work, as "medium MCUs".

The

medium

MCUs

are

mostly

used

in

embedded

applications

and

often

its

resources

are

not

fully

used,

because,

a

previous

exact

characterize

of

the

microcontroller

model

and

its

target

applications

is

a

costly-time

task.

In

some

concluded

applications

some

resources

and

peripherals

are

never

used

because

the

peripherals have specific and static behavior.

For

example,

in

a

design

which

a

USB

peripheral

is

required,

two

chips

can

be

used:

the

STM32F103VF,

from

STmicroelectronics,

and

the

PIC24HJ128GP510A,

from

Microchip.

Both

also

have

several

Timers,

PWM,

I2C,

etc.,

which

are

not

needed

in

the

example.

These

unneeded peripherals can not be used to other functions.

There is no flexibility.

In

this

work,

the

concept

of

a

scalable,

flexible

and

parameterized architecture is showed and it can result in a

customized

microcontroller

containing

the

minimum

number of resources to the application in development.

The proposed architecture can support in the previous

characterization of the necessary requirements and can be

used

as

an

alternative

in

several

applications.

These

applications are the ones that need a superior processing

for those simple microcontrollers. It happens in a similar

way

to

the

inferior

processing

for

those

robust

microcontrollers.

The

proposed

architecture

is

called

FePAMM

-

Flexible

and

Parameterized

Architecture

for

Multicore

Microcontroller,

and

it

aimed

to

medium

complexity

embedded

applications.

We

like

to

highlight

the

main

contributions of our architecture:

-

An

architecture

composed

by

interconnected

minimalist

processors.

These

processors

perform

control

functions,

data

reception

and

generation,

and

are

capable

to

emulate

functions

of

specific

peripherals.

This

architecture

is

flexible

and

allows

creating

distinct

and

dedicated

functions

in

each

processor.

-

We have done an approach for the message exchange

that

allows

processor's

synchronization

in

a

simple

way.

So,

the

messages

can

be

independently

sent

or

receive,

at

any

time

for

any

processor

of

the

microcontroller multicore. Therefore, the transmission

of many synchronous messages is allowed.

-

On

the

other

side,

we

have

created

an

approach

to

obtain redundancy of the processing in a simple way,

which

take

advantages

of

swap

among

synchronous

messages.

Each

processor

has

its

own

program

memory,

RAM

memory

and

independent

ways

for

communicating

to

others

processors.

Thus,

our

JOURNAL OF COMPUTERS, VOL. 6, NO. 11, NOVEMBER 2011

2277

© 2011 ACADEMY PUBLISHER

<think>好的,我现在需要回答用户关于PyTorch是否支持同时安装CPUGPU版本的问题。首先,我应该回顾一下PyTorch的安装机制。根据用户提供的引用资料,安装GPU版本的PyTorch通常需要特定的CUDA版本,并且用户可能需要通过不同的渠道获取对应的whl文件,比如从官网或镜像源下载[^2][^3][^5]。 接下来,我需要理解CPUGPU版本的区别。CPU版本是运行在处理器上的,而GPU版本需要NVIDIA的CUDA支持,利用显卡加速计算。两者在安装包上有不同的依赖项库文件,例如GPU版本会包含CUDA相关的库,而CPU版本则没有这些。 然后,我考虑是否可以在同一个环境中同时安装两个版本。根据经验,Python的包管理通常不允许同一个包的不同版本共存,因为包名称相同(如torch)会导致冲突。用户提供的引用中提到,如果强行安装不同版本的torch,可能会覆盖现有安装,导致不可预期的问题[^4][^5]。例如,如果先安装CPU版本,再安装GPU版本,后者会覆盖前者,反之亦然。 此外,用户可能需要同时使用两种环境的情况,比如在没有GPU的机器上运行CPU代码,而在有GPU的机器上运行加速代码。这时,使用虚拟环境(如conda或venv)分别创建独立的环境可能更合适。每个环境可以安装对应的PyTorch版本,避免冲突[^1][^3]。 还有一个考虑点是PyTorch的设计是否支持同时加载两个版本的库。通常,在运行时,PyTorch会检测可用的CUDA设备,并自动使用GPU版本。如果安装了GPU版本,即使代码中没有显式调用CUDA函数,PyTorch也会优先使用GPU资源。因此,同时安装两个版本不仅技术上不可行,也没有实际必要,因为GPU版本已经包含CPU功能。 最后,我需要总结这些信息,给出清晰的回答,并建议用户使用虚拟环境来管理不同版本的PyTorch,确保项目的兼容性稳定性。</think>PyTorch无法在同一个Python环境中同时安装CPUGPU版本。以下是具体分析及解决方案: ### 一、版本冲突机制 PyTorch的CPUGPU版本通过包名`torch`进行统一管理。安装时会根据后缀(如`cuXXX`表示CUDA版本)决定具体类型: - CPU版本:例如`torch-1.10.0-cp37-cp37m-win_amd64.whl` - GPU版本:例如`torch-1.10.0+cu113-cp37-cp37m-win_amd64.whl` 由于包名相同,后安装的版本会直接覆盖前一个版本[^4]。例如: ```bash # 先安装CPU版本 pip install torch==1.10.0 # 再安装GPU版本会导致覆盖 pip install torch==1.10.0+cu113 ``` ### 二、推荐解决方案 使用虚拟环境隔离不同需求: 1. **Conda环境管理**(推荐): ```bash # 创建GPU环境 conda create -n pytorch_gpu python=3.8 conda activate pytorch_gpu pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu113 # 创建CPU环境 conda create -n pytorch_cpu python=3.8 conda activate pytorch_cpu pip install torch torchvision ``` 通过`conda activate`切换环境即可[^3] 2. **Docker容器方案**: ```dockerfile # GPU容器 FROM pytorch/pytorch:1.10.0-cuda11.3-cudnn8-runtime # CPU容器 FROM pytorch/pytorch:1.10.0-cpu ``` ### 三、版本兼容性验证 安装后可通过以下代码检测当前环境版本: ```python import torch print(torch.__version__) # 输出如1.10.0+cpu或1.10.0+cu113 print(torch.cuda.is_available()) # GPU版本返回True ``` ### 四、特殊需求处理 若需在GPU版本中使用CPU模式,可直接通过代码指定设备: ```python device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") tensor = torch.randn(3,3).to(device) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值