斐波那契数性质 gcd(F[n],F[m])=F[gcd(n,m)]

引理1

结论:
\[F(n)=F(m)F(n-m+1)+F(m-1)F(n-m)\]

推导:
\[ \begin{aligned} F(n) &= F(n-1)+F(n-2) \\ &= 2F(n-2)+F(n-3) \\ &= 3F(n-3)+2F(n-4) \\ &= 5F(n-4)+3F(n-5) \\ &= \cdots \\ &= F(m)F(n-m+1)+F(m-1)F(n-m) \end{aligned} \]

看出系数的规律了,2=1+1,3=2+1,5=3+2,……

用数学归纳法严谨证明一下:

1)当\(m=2\)时,\(F(n)=F(2)F(n-2+1)+F(2-1)F(n-2)=F(n-1)+F(n-2)\)成立。

2)设当\(m=k \quad (2 \leq k \leq n-2)\)时,\(F(n)=F(k)F(n-k+1)+F(k-1)F(n-k)\)成立。

\(\because F(k-1)=F(k+1)-F(k)\)
\(\therefore F(n)=F(k)F(n-k+1)+\left[F(k+1)-F(k)\right]F(n-k)\)
\(F(n)=F(k+1)F(n-k)+F(k)\left[F(n-k+1)-F(n-k)\right]\)
\(\because F(n-k+1)-F(n-k)=F(n-k-1)\)
\(\therefore F(n)=F(k+1)F(n-k)+F(k)F(n-k-1)\),说明当\(m=k+1\)时等式也成立。

综上,\(F(n)=F(m)F(n-m+1)+F(m-1)F(n-m)\)对于\([2,n-1]\)内的任意一个整数\(m\)都成立。

引理2

\[\gcd(F(n),F(n-1))=1\]

根据gcd更相减损性质:\(\gcd(a,b)=\gcd(b,a-b) \quad (a>b)\)
\(\gcd(F(n),F(n-1))=\gcd(F(n-1),F(n)-F(n-1))=\gcd(F(n-1),F(n-2))\)

不断套用上式得到\(\gcd(F(n),F(n-1))=\gcd(F(2),F(1))=1\)

证明\(\gcd(F(n),F(m))=F(gcd(n,m))\)

由引理1可知
\(\gcd(F(n),F(m)) = \gcd(F(m)F(n-m+1)+F(m-1)F(n-m),F(m)) \quad (n>m)\)

\(F(m)F(n-m+1)\)\(F(m)\)的倍数,故
\(\gcd(F(n),F(m)) = \gcd(F(m-1)F(n-m),F(m))\) (gcd的更相减损,可以消掉\(F(m)\)的倍数)

因为\(F(m),F(m-1)\)互质,于是\(\gcd(F(n),F(m)) = \gcd(F(n-m),F(m))\)

递归上式,

\(\gcd(F(n),F(m)) = \gcd(F(n-m),F(m)) = \gcd(F(n-m-m),F(m)) = \cdots\)
\(\gcd(F(n),F(m)) = \gcd(F(n \mod m),F(m))\)

再递归上式,我们需要比较\(n \mod m\)\(m\)谁更大,用大的数mod小的数。这不就是辗转相除法求最大公约数吗?

于是\(\gcd(F(n),F(m)) = \gcd(F(\gcd(n,m)),F(\gcd(n,m))) = F(\gcd(n,m))\)

证毕。

转载于:https://www.cnblogs.com/1024th/p/10897313.html

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值