出处——《剑指Offer》
使用递归实现实现斐波那契
int Fibonacci( unsigned int n )
{
if( n <= 0 )
return 0;
if( n == 1 )
return 1;
return Fibonacci( n - 1 ) + Fibonacci( n - 2 );
}
但使用递归时,Fibonacci( n - 1 ) + Fibonacci( n - 2 )前后两项在进行递归的过程中,会出现许多重复计算,效率很低(比如重复计算Fibonacci( n - 3 ), Fibonacci( n - 4 )..... )。
可考虑使用循环实现,从下往上计算。即通过f(0) + f(1) 得到f(2), 再由f(2) + f(1)得到f(3)....直到计算出f(n)
int Fibonacci( unsigned int n )
{
int FibN, FibNOne, FibNTwo;
int i;
int result[2] = { 0, 1 };
if( n < 2 )
return result[n];
FibNOne = 0;
FibNTwo = 1;
FibN = 0;
for( i = 2; i <= n; i++ )
{ /*以第一次循环执行过程为例*/
FibN = FibNOne + FibNTwo; /*f(2) = f(0) + f(1)*/
FibNOne = FibNTwo; /*f(1)*/
FibNTwo = FibN; /*f(2)*/
}
return FibN;
}