生成重复_Excel中按指定次数生成重复数据的三种方法

小五分享了在Excel中按指定次数生成重复数据的3种实用方法。一是函数公式加排序;二是函数公式结合Word;三是借助Power Query。每种方法都有详细的操作步骤,可帮助用户高效完成数据重复生成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天小五和大家分享如何按照指定的次数生成重复数据的3种操作方法,非常实用!

如下图表格,根据指定的次数,重复第一列中对应的项目名称:

ab9682920b22b60e262620e4ac8094dd.png

第一种方法:函数公式 + 排序

1、在C2单元格中输入公式:=SUM($B$2:B2)-ROW(A1),下拉填充公式,截止到结果出现0的单元格,再对C列中的数据进行升序排列。

2d30361cab6e34141da188efb25d10b6.gif

2、选中A列数据区域,按Ctrl+G打开条件定位窗口 ,定位空值,然后在编辑栏内输入:=A3,按Ctrl+Enter组合键批量输入。

9d2cd537b2d1b4eab711841bca7e18e3.gif

第二种方法:函数公式结合Word

1、在C2单元格中输入公式:=REPT(A2&CHAR(10),B2),往下填充公式。

2aa3dd98baf15f52b770fb0e3692edaa.gif

2、把C列中的内容复制粘贴到Word文档中,再把内容从Word中复制粘贴回Excel中即可。

342b38ab803ecf62c9b99afc10df1d1e.gif

第三种方法: 借助Power Query

1、选中任意一个数据单元格,在【数据】选项卡下点击“从单元格”命令,勾选“表包含行标题”,确定。

dd4021b2bd805b2efe9493a933bed39e.gif

2、在打开的Power Query编辑器里,点击【添加列】下的自定义列,对话框“新列名”中输入:次数,自定义列公式里输入:={1..[重复次数]},确定。

d5925d8d989a2d90dd4d19398f8d09ab.gif

3、单击次数列的扩展按钮,扩展到新行,删除不必要列,关闭并上载即可。

303c39dc4f1585a09d41589b3d40a37e.gif
### 使用 Python 统计 Excel 文件中行数据的重复次数 为了实现这一目标,可以利用 `pandas` 库读取 Excel 文件并将其中的数据转换成 DataFrame 对象。通过调用 `.duplicated()` 方法以及 `.value_counts()` 函数能够有效地计算每一行在整个表中的出现频次。 #### 导入库 首先安装必要的库(如果尚未安装),可以通过命令提示符执行如下指令: ```bash pip install pandas openpyxl ``` 接着导入所需的模块: ```python import pandas as pd ``` #### 加载 Excel 数据 定义函数用于加载指定路径下的 Excel 表格,并返回其内容作为 Pandas 的 DataFrame 类型对象: ```python def load_excel(file_path): df = pd.read_excel(file_path) return df ``` #### 计算行重复次数 创建一个新的列来表示每行首次出现的位置索引;再基于这些索引来判断哪些是重复项;最后统计各唯一组合的数量即可得到最终的结果。 ```python def count_row_duplicates(df): # 添加一列表示原始索引位置 df['original_index'] = range(len(df)) # 找出行内是否有完全相同的记录,默认保留第一次出现的标记为False其余True duplicate_bool_series = df.duplicated(keep='first') # 将布尔序列转为整数形式方便后续操作 duplicates_marked_as_integers = duplicate_bool_series.astype(int) # 创建新列为是否重复标志位 df['is_duplicate'] = duplicates_marked_as_integers # 获取所有可能存在的重复模式及其数量 row_frequencies = df.groupby(list(df.columns)).size().reset_index(name='counts') return row_frequencies.drop(['original_index', 'is_duplicate'], axis=1), df[duplicate_bool_series] ``` 上述代码片段实现了两个功能:一是生成了一个新的DataFrame (`row_frequencies`) 来展示不同行模式的具体分布情况;二是提取出了所有的重复条目以便进一步审查[^1]。 #### 完整流程演示 这里给出一段完整的程序用来说明整个过程的工作方式: ```python if __name__ == "__main__": file_path = "work_all.xlsx" data_frame = load_excel(file_path) frequencies, duplicated_rows = count_row_duplicates(data_frame) print("Row Frequencies:") print(frequencies) if not duplicated_rows.empty: print("\nDuplicated Rows:") print(duplicated_rows) else: print("No Duplicates Found.") ``` 这段脚本会先打印出各个不同行模式的发生频率,如果有任何重复的情况也会一同输出供查看[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值