php include require,php 中include()与require()的对比

php的require()与include(),在性能方面并无大的不同。

仅有的一些不同在于:

include()执行时文件每次都要进行读取和评估;

require()执行时文件只处理一次(实际上,文件内容替换了require()语句)。

即如果有包含这些指令之一的代码和可能执行多次的代码,则使用require()效率比较高。

另外,如果每次执行代码时要读取不同的文件,或有通过一组文件叠代的循环,就应该使用include(),因为可以给想要包括的文件名设置一个变量,当参数为include()时使用这个变量。

php的require()性能与include()虽然有相似的地方,但是通过自己的学习和查找,还是找到了6点区别如下。

1、

不同之处在于,对include()来说,在include()执行时文件每次都要进行读取和评估;

而对于require()来说,文件只处理一次(实际上,文件内容替换了require()语句)。

这就意味着如果有包含这些指令之一的代码和可能执行多次的代码,则使用require()效率比较高。

2、

require是只执行一次的,不,这么说不恰当。应当说,require是先替代,将指定文件的内容代进来,再运行,所以它不知道你是否设置了FOR循环。而include语句,

是什么时候执行到了,什么把指定文件的内容代进来,继续执行。

所以,如果每次执行代码时想读取不同的文件,或者有通过一组文件叠代的循环,就使用 include(),因为可以给想要包括的文件名设置一个变量,当参数为include()

时使用这个变量。

3、

include在执行时,如果 include 进来的文件发生错误的话,不会立刻停止;而 require 则会立刻终止程序,不再往下执行。

4、include可以用在循环; require不行。

5、include有返回值,而require没有(可能因为如此require的速度比include快)

ok.php里的代码为 echo "ok!";

$login = include('ok.php');

if(!empty($login)){ echo "文件包含成功";

}else{ echo "文件包含失败"; }

最后返回结果为:ok!文件包含成功

只要ok.php里有语句存在,就会返回成功。

在举一个例子:

1.php里的代码如下:

return array(

'ILOVEYOU'=>1,2,3,4

);

?>

index.php里的代码如下:

$a = array_change_key_case(include '1.php');

print_r($a);

?>

访问index.php的结果如下:

Array ( [iloveyou] => 1 [0] => 2 [1] => 3 [2] => 4 )

6、require的使用方法:这个函数通常放在 PHP 程序的最前面,PHP 程序在执行前,就会先读入 require 所指定引入的文件,使它变成 PHP 程序网页的一部份。常

用的函数,亦可以这个方法将它引入网页中。

include使用方法:这个函数一般是放在流程控制的处理部分中。PHP 程序网页在读到 include 的文件时,才将它读进来。这种方式,可以把程序执行时的流程简单化

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像的目标属于哪个类别。 定位问题:确定目标在图像的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值