基础知识点
首先明确期望公式:
\[E(X)=∑_ip_i*x_i\]
其中 \(p\) 代表概率 , \(x\) 代表发生贡献。
然后期望的几点性质:
对于数学期望,我们还应该明确一些知识点:
(1) 期望的“线性”性质
对于所有满足条件的离散型的随机变量\(X,Y\)和常量\(a,b\)有: \[E(aX+bY)=aE(x)+bE(y)\]
即常说的"期望的和等于和的期望"
类似的,我们还有 \(E(XY)=E(X)+E(Y)\).
(2)全概率公式
假设\({Bn∣n=1,2,3,...}\) 是一个“概率空间有限或可数无限”的分割,且集合\(Bn\)是一个“可数集合”,则对于任意事件\(A\)有:
\[P(A)=∑_nP(A∣Bn)P(Bn)\]
(3)全期望公式
\[E(Y)=E(E(Y∣X))=∑_iP(X=xi)E(Y∣X=xi)\]
1. P3802 小魔女帕琪
题目链接
Solution
今天被期望虐惨了,去洛谷找了一道颜色最浅的期望题,结果还是被虐了...
首先,很明显,小魔女会施展\(N=\sum^{i=1}_7a_i\) 次魔法。
我们考虑一个节点 \(i\) , 以它为起点;
然后有 \(7\) 种不同颜色的概率即为:
\[\prod^{i=1}_{7}\frac{a_i}{N-i+1}\]
然后,我们可以知道每一次这种结果的贡献即为其排列数 \(7!\)
所以对于单点 \(i\) , 其期望即为:
\[P_i=7!*\prod^{i=1}_{7}\frac{a_i}{N-i+1}\]
由因为这样的点至多只有 \(N-6\) 个,所以最终答案即为:
\[Ans=(N-6)*7!*\prod^{i=1}_{7}\frac{a_i}{N-i+1}\]
然后此题代码十分简洁.不过十行.
2. UVA12230 Crossing Rivers
题目链接
题意翻译
一个人每天需要从家去往公司,然后家与公司的道路是条直线,长度为 \(D\)。
同时路上有 \(N\) 条河,给出起点和宽度\(W_i\) , 过河需要乘坐速度为\(V_i\) 的渡船;
船在河中的位置随机,固定往返时间. 且该人在陆地上行走速度为 1 .求该人去公司的路途的期望时间.
Solution
让我多了一些对于期望的了解。
考虑过每条河流的最坏情况和最好情况.
1.最坏情况: \((3*W_i)/V_i\) ; 此时即船刚刚走。
2.最好情况: \(W_i/V_i\) ; 此时即船刚好来。
由于船的位置随机,所以说其满足期望线性.
所以我们每次过一条河流的期望时间即为: \((2*W_i)/V_i\) ;
然后就解决了这个问题.
3. SP1026 FAVDICE - Favorite Dice
题目链接
一句话题意:
给一个 \(n\) 面的骰子,问每一面都被甩到的次数期望是多少.
Solution
这是一道比较好的期望 DP 入门题.
考虑定义 \(f[i]\) 为有 \(i\) 面没有被投到的可能次数.
那么对于没有投到的面数 \(k\) ,我们有 \(k/n\) 的可能性继续投到它们.
同样,对于已经投到过的,我们有 \(n-k/n\) 的概率可继续投到它们.
然后它们的贡献即分别为 \(f[k]\) 和 \(f[k-1]\).
那么即得到转移式:
\[f[i]=i/n*f[i]+(n-i)/n*f[i+1]+1\]
从 \(f[n]\) 倒推即可,\(f\) 初始为 0.
4. P1365 WJMZBMR打osu! / Easy
题目链接
Solution
Wa,我是真的被期望折服了,感觉这道题拿来练手正好.
DP的难度可做又巧妙...
我们定义:
\(f[i]\) 代表到第 \(i\) 次点击的时候的最大答案.
\(g[i]\) 代表到第 \(i\) 此点击的 \(o\) 的期望长度.
然后看转移:
1.此时为 \(o\) ,那么我可以直接计算答案。
由于 \((x+1)^2=x^2+2x+1\) ,所以我们得到转移方程:
\[f[i]=f[i-1]+2*g[i-1]+1\]
同时由于此时 \(o\) 的长度已经增加,所以同时 \(g[i]=g[i-1]+1\).
2.此时为 \(x\),同样直接统计答案.
\(f[i]=f[i-1]\) , \(g[i]=0\).
3.此时为 \(?\) ,那么我们对于以上两种情况都有 \(0.5\) 的概率.
然后直接转移:
\[f[i]=0.5*(f[i-1]+2*g[i-1]+1+f[i-1])\]
\[g[i]=0.5*(g[i-1]+1+0)\]
然后最后面 \(f[n]\) 即为答案.