随机过程学习笔记02 条件数学期望

随机方面的知识非常欠缺,最近看看资料学习一下。

前情提要:什么是概率空间上的随机变量?随机变量是样本空间 ( Ω ) (\Omega) (Ω)上的一个(可测)函数,例如 ξ : Ω → R \xi:\Omega\to \mathbb{R} ξ:ΩR { ξ ≤ x } : = { ω ∈ Ω : ξ ( ω ) ≤ x } ∈ F \{\xi\le x\}:=\{\omega\in\Omega:\xi(\omega)\le x\}\in\mathscr{F} { ξx}:={ ωΩ:ξ(ω)x}F

条件数学期望

定义1

定义1 X , Y 1 , … , Y n X,Y_1,\dots,Y_n X,Y1,,Yn为概率空间 ( Ω , F , P ) (\Omega,\mathscr{F},P) (Ω,F,P)上的随机变量且满足 E [ X 2 ] < ∞ \mathbb{E}[X^2]<\infty E[X2]<,称由 Y 1 , … , Y n Y_1,\dots,Y_n Y1,,Yn决定的随机变量 f ( Y 1 , … , Y n ) f(Y_1,\dots,Y_n) f(Y1,,Yn) X X X关于 Y 1 , … , Y n Y_1,\dots,Y_n Y1,,Yn条件数学期望,若 f ( Y 1 , … , Y n ) f(Y_1,\dots,Y_n) f(Y1,,Yn)满足

  • E [ f 2 ( Y 1 , … , Y n ) ] < ∞ \mathbb{E}[f^2(Y_1,\dots,Y_n)]<\infty E[f2(Y1,,Yn)]<;
  • 任意的 g ( Y 1 , … , Y n ) ∈ L 2 ( Ω , σ ( Y 1 , Y 2 , … , Y n ) , P ) g(Y_1,\dots,Y_n)\in L^2(\Omega,\sigma(Y_1,Y_2,\dots,Y_n),P) g(Y1,,Yn)L2(Ω,σ(Y1,Y2,,Yn),P)(也就是说 g g g满足 E [ g 2 ( Y 1 , … , Y n ) ] < ∞ \mathbb{E}[g^2(Y_1,\dots,Y_n)]<\infty E[g2(Y1,,Yn)]<),下式成立 E [ X g ( Y 1 , … , Y n ) ] = E [ f ( Y 1 , … , Y n ) g ( Y 1 , … , Y n ) ] . \mathbb{E}[Xg(Y_1,\dots,Y_n)]=\mathbb{E}[f(Y_1,\dots,Y_n)g(Y_1,\dots,Y_n)]. E[Xg(Y1,,Yn)]=E[f(Y1,,Yn)g(Y1,,Yn)]. f ( Y 1 , … , Y n ) f(Y_1,\dots,Y_n) f(Y1,,Yn)记为 E [ X ∣ Y 1 , … , Y n ] \mathbb{E}[X|Y_1,\dots,Y_n] E[XY1,,Yn]

注意!!! 这个条件数学期望不是期望值,而是一个随机变量!!!它是在 Y 1 , … , Y n Y_1,\dots,Y_n Y1,,Yn成立的条件下 X X X最可能的值。

g ( Y 1 , … , Y n ) g(Y_1,\dots,Y_n) g(Y1,,Yn)可以看做是一个复合函数 g ∘ ( Y 1 , … , Y n ) ( ω ) g\circ(Y_1,\dots,Y_n)(\omega) g(Y1,,Yn)(ω)
在求解条件数学期望的时候要多多应用 E [ X g ( Y 1 , … , Y n ) ] = E [ f ( Y 1 , … , Y n ) g ( Y 1 , … , Y n ) ] , ∀ g ∈ L 2 ( Ω , σ ( Y 1 , … , Y n ) , P ) \mathbb{E}[Xg(Y_1,\dots,Y_n)]=\mathbb{E}[f(Y_1,\dots,Y_n)g(Y_1,\dots,Y_n)], \forall g\in L^2(\Omega,\sigma(Y_1,\dots,Y_n),P) E[Xg(Y1,,Yn)]=E[f(Y1,,Yn)g(Y1,,Yn)],gL2(Ω,σ(Y1,,Yn),P)

例1:设 ( X , Y ) (X,Y) (X,Y)服从密度函数为 p ( x , y ) p(x,y) p(x,y)的连续型分布函数,且假定 p ( x , y ) > 0 p(x,y)>0 p(x,y)>0 ( x , y ) ∈ R 2 (x,y)\in \mathbb{R}^2 (x,y)R2 E [ X 2 ] < ∞ \mathbb{E}[X^2]<\infty E[X2]<,求 E [ X ∣ Y ] \mathbb{E}[X|Y] E[XY]
解:我们需要求一个Borel可测函数 f f f,使得 E [ X ∣ Y ] = f ( Y ) \mathbb{E}[X|Y]=f(Y) E[XY]=f(Y),满足 ∀ g ∈ L 2 ( Ω , σ ( Y ) , P ) \forall g\in L^2(\Omega,\sigma(Y),P) gL2(Ω,σ(Y),P) E [ f ( Y ) g ( Y ) ] = E [ X g ( Y ) ] . \mathbb{E}[f(Y)g(Y)]=\mathbb{E}[Xg(Y)]. E[f(Y)g(Y)]=E[Xg(Y)]. Y Y Y的边际密度为 p Y ( y ) = ∫ R p ( x , y ) d x p_Y(y)=\int_{\mathbb{R}}p(x,y)\mathrm{d}x pY(y)=Rp(x,y)dx,且假定对任意的 y , p Y ( y ) > 0 y,p_Y(y)>0 y,pY(y)>0 E [ f ( Y ) g ( Y ) ] = ∫ R g ( y ) f ( y ) p Y ( y ) d y E [ X g ( Y ) ] = ∫ _ R i n t R x g ( y ) p ( x , y ) d x d y = ∫ R g ( y ) ( ∫ R x p ( x , y ) d x ) d y \begin{aligned} \mathbb{E}[f(Y)g(Y)]&=\int_{\mathbb{R}}g(y)f(y)p_Y(y)\mathrm{d}y\\ \mathbb{E}[Xg(Y)]&=\int\_{\mathbb{R}}int_{\mathbb{R}}xg(y)p(x,y)\mathrm{d}x\mathrm{d}y\\ &=\int_{\mathbb{R}}g(y)(\int_{\mathbb{R}}xp(x,y)\mathrm{d}x)\mathrm{d}y \end{aligned} E[f(Y)g(Y)]E[Xg(Y)]=Rg(y)f(y)pY(y)dy=_RintRxg(y)p(x,y)dxdy=Rg(y)(Rxp(x,y)dx)dy g ( y ) g(y) g(y)的任意性,由实变知识可知【我感觉这里其实是泛函的知识,L^2是自反的,利用了“对于线性赋范空间的点 x , y x,y x,y,若对任意有界线性泛函 f f f都有 f ( x ) = f ( y ) f(x)=f(y) f(x)=f(y),则 x = y x=y x=y”【这个用Hahn-Banach延拓来证】】 f ( y ) = ∫ R x p ( x , y ) d x p Y ( y ) . f(y)=\frac{\int_{\mathbb{R}}xp(x,y)\mathrm{d}x}{p_Y(y)}. f(y)=pY(y)Rxp(x,y)dx. □ \Box .

定义2+性质

定义2

定义2:设 X , Y 1 , … , Y n X,Y_1,\dots,Y_n X,Y1,,Yn为概率空间 ( Ω , F , P ) (\Omega,\mathscr{F},P) (Ω,F,P)上的随机变量,满足 E [ ∣ X ∣ ] < ∞ \mathbb{E}[|X|]<\infty E[X]< f f f R n → R \mathbb{R}^n\to\mathbb{R} RnR的Borel函数,称 f ( Y 1 , … , Y n ) f(Y_1,\dots,Y_n) f(Y1,,Yn) X X X关于 ( Y 1 , … , Y n ) (Y_1,\dots,Y_n) (Y1,,Yn)条件数学期望,若

  • E ∣ f ( Y 1 , … , Y n ) ∣ < ∞ \mathbb{E}|f(Y_1,\dots,Y_n)|<\infty Ef(Y1,,Yn)<
  • 对于任意的 n n n维有界Borel函数 g g g,下式成立 E [ X g ( Y 1 , … , Y n ) ] = E [ f ( Y 1 , … , Y n ) g ( Y 1 , … , Y n ) ] . \mathbb{E}[Xg(Y_1,\dots,Y_n)]=\mathbb{E}[f(Y_1,\dots,Y_n)g(Y_1,\dots,Y_n)]. E[Xg(Y1,,Yn)]=E[f(Y1,,Yn)g(Y1,,Yn)]. f ( Y 1 , … , Y n ) f(Y_1,\dots,Y_n) f(Y1,,Yn)记为 E [ X ∣ Y 1 , … , Y n ] E[X|Y_1,\dots,Y_n] E
  • 6
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 随机过程概率论和数学的一个分支,它描述了由随机变量组成的序列或进程的演变。在实际应用中,随机过程被广泛用于信号处理、通信系统建模、金融风险管理、仿真和优化等领域。因此,在计算机科学、通信工程、数学和金融等专业的课程中,随机过程是重要的学科之一。 CSDN笔记中的随机过程内容主要涉及基础理论和数学推导。通过阅读这些笔记,可以帮助读者深入了解随机过程的基本概念、随机变量、概率分布、均值和方差、相关性和协方差、自相关函数和功率谱密度等重要知识点。这些知识可以帮助读者理解随机过程的背景和基础理论,并为进一步的应用打下坚实的基础。 除了理论知识,随机过程也包括实际应用和工程问题的解决。因此,CSDN笔记中也包含了一些具体的案例和实例,帮助读者了解如何将随机过程应用于实际问题的解决。例如,如何设计稳定的数字滤波器、如何模拟随机信号和如何应用随机过程进行统计分析等。 总之,CSDN笔记中的随机过程内容是非常有用的,可以帮助读者深入了解随机过程的基本概念和应用,为学习相关领域打下良好的基础。 ### 回答2: 随机过程概率论的一个重要分支,它研究的是随机变量在时间上的演化规律,因此广泛应用于信号处理、通信、控制、金融、生物医学等众多领域。 在信号处理方面,随机过程可用于分析和处理噪声信号,提高信号的质量和可靠性;在通信中,随机过程可用于设计和优化通信系统,提高信号传输的速率和稳定性;在控制方面,随机过程可用于控制系统的建模和优化,提高控制系统的精度和鲁棒性;在金融上,随机过程可用于建立和分析金融市场模型,对投资和交易有重要的指导意义;在生物医学方面,随机过程可用于基因表达、神经信号传递等生理现象的建模和分析。 因此,对于学习和从事以上领域的研究工作的人来说,掌握随机过程的理论知识及应用方法是十分必要的。CSDN作为技术社区,提供了大量与随机过程相关的笔记和文章,为学习者和研究者提供了宝贵的参考资料,有着重要的实践意义。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值