概率论-数学期望和方差(复习笔记自用)

期望

定义(关于理解)

    • 统计含义

在具体的场景下,期望可以理解为总体的平均,也可以理解为多次独立重复实验,每次的平均值。具体可见大数率的证明。

    • 绝对收敛的理解

在定义中要求级数的绝对收敛是要使级数有明确意义,在数学期望中,要求任意改变x的次序而不影响收敛性和值,即要求级数绝对收敛。值得补充的是,当所有x非负时,如果级数无穷,则EX仍旧有明确意义,即X的期望为无穷。举例来说,作为类比,可以拆分为x正和x负两个子序列,而其级数和都为无穷,分别是正无穷和负无穷。在有次序的要求下,它为收敛级数但不是绝对收敛,其没有明确意义正是因为两个子序列级数和为无穷相减,结果不知,故此级数在没有次序的情况下极限难以确定,没有明确的意义。

    • 几何解释:

期望为几何重心。这种理解x只存在一维的情况,如果将这种想法拓宽到二维的情况,很自然的就能引进复平面,联想到欧拉公式,而缠绕图像的质心恰是理解傅里叶变换的极好方法。

常用的数学期望

  • 离散型(伯努利分布,二项分布,泊松分布,几何分布,超几何分布

  • 连续性(正态分布,均匀分布,指数分布,柯西分布(不存在当随机变量加上绝对值,期望为无穷)

  • 正态分布:当概率密度函数f(x)关于对称,EX=;从几何上来看,也可以直观得出

随机变量的函数的数学期望

连续型

X非负随机变量

  • 关于第三条的证明和其他一些理解

  • 其应用于前两条无法解决的问题,有很强的实用性;瓶颈时可以思考此种解法

离散型

  • 第三条的证明(用法同上)

性质

  • 线性性质

  • 若X相互独立,乘积的数学期望存在,则

方差

定义

  • 记法:方差记为Var(X)或者;标准差记为

  • 计算方法:

  • 离散型:

  • 连续型:

常用的方差

离散型:伯努利分布,二项分布,泊松分布,几何分布

连续型:均匀分布,指数分布,正态分布

性质

  • 随机变量X在均方误差的意义下距离期望最近

  • 当随机变量相互独立时,

  • 标准化(其本质和线性代数中施密特标准化一致)

协方差和相关系数

协方差

  • 公式

协方差为0,随机变量不相关

相关系数

  • 公式

相关系数是随机变量标准化后的协方差

相关系数在线性变化下保持不变

  • 性质

  • 内积不等式(Cauchy-Schwarz不等式)

  • 类比线性代数中内积不等式,内积符号就为E(XY),而模的符号则为,等号成立的充要条件为X,Y线性相关

  • 证明方法 通过E(aX+bY)**2二次型,对称阵的非负定性得到结论,而等号成立当且仅当对称阵退化,即P(aX+bY)=1,X,Y线性相关

  • 内积不等式应用(156)

  • 上一条等号成立的充要条件为 X,Y线性相关

  • 相关系数为0,则不相关,但随机变量之间仍可能存在非线性关系(可能不独立);当随机变量独立时,相关系数为0,不相关;相关系数为正,则正相关,为负,则负相关

  • 协方差矩阵

  • 性质:

  • 半正定阵

  • 退化的充要条件为线性相关

  • 独立与不相关等价

  • 正态分布

  • 二值随机变量

  • 掌握正态分布,求联合分布的题型

应用

  • 抽样调查(214典例)

  • 信号噪声模型:揭示了仪器如没有系统偏差,测量精度可通过多次测量的平均来改进。

  • 估计量的无偏性和有效性:参数估计,估计量,无偏性(平均),有效性(方差);有偏估计(过气了)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值